Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 106(9): 2433-2439, 2018 09.
Article in English | MEDLINE | ID: mdl-29682887

ABSTRACT

Corrosion and release of nickel ions from biomedical alloys are well documented, but little is still known about the effects of released nickel ions on cellular function with recurrent inflammatory challenges. Evidence suggests Ni(II) ions amplify LPS-induced secretion of several pro-inflammatory cytokines from monocytes. Exacerbating the inflammatory response, hyperglycemic conditions also affect monocytic function. This study investigated how Ni(II) and hyperglycemic conditions, both singly and in combination, alter monocyte proliferation, mitochondrial activity, inflammatory responses, and differentiation. Results showed that Ni(II) did not affect proliferation, but decreased mitochondrial activity in monocytic-cells and macrophages under normal conditions. However, hyperglycemic conditions negated the toxicity seen with Ni(II) exposure. Cytokine secretion in response to LPS was variable, with little effect on IL6 secretion, but significantly increased secretion of IL1ß at intermediate Ni(II) concentrations. Hyperglycemic conditions did not alter these results significantly. Finally, exposure to eluants from nickel-based commercial alloys caused enhanced IL1ß secretion from PMA-treated cells. These data suggest that corrosion products from nickel-containing dental alloys increased Ni(II)-induced changes in cytokine secretion by monocytes and macrophages. By better defining the effects of Ni(II) at these lower, biomedically relevant concentrations, we improve understanding of the biomedical alloy risk in the context of dental inflammation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2433-2439, 2018.


Subject(s)
Glucose/toxicity , Macrophages/pathology , Monocytes/pathology , Nickel/pharmacology , Cell Count , Cell Differentiation/drug effects , Humans , Ions , Macrophages/drug effects , Monocytes/drug effects , Succinate Dehydrogenase/metabolism , THP-1 Cells
2.
Anticancer Res ; 34(11): 6305-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25368229

ABSTRACT

BACKGROUND: Recent studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory, antioxidative and play a critical role in protection against cancer. These effects have been attributed to NF-E2-related factor (NRF2)-mediated up-regulation of 'phase 2' genes that neutralize oxidative stress and metabolize electrophiles. We had previously shown that small doses of blue light (400-500 nm) had selective toxicity for cultured oral tumor cells and increased levels of peroxiredoxin phase 2 proteins, which led to our hypothesis that blue light activates NRF2 signaling. MATERIALS AND METHODS: A431 epidermoid carcinoma cells were treated in culture and as nude mouse xenografts with doses of blue light. Cell lysates and tumor samples were tested for NRF2 activation, and for markers of proliferation and oxidative stress. RESULTS: Blue light activated the phase 2 response in cultured A431 cells and reduced their viability dose dependently. Light treatment of tumors reduced tumor growth, and levels of proliferating cell nuclear antigen (PCNA), and oxidized proteins. DISCUSSION: Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation and cancer.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation/radiation effects , Heme Oxygenase-1/metabolism , Light , NF-E2-Related Factor 2/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Animals , Apoptosis/radiation effects , Blotting, Western , Carcinoma, Squamous Cell/radiotherapy , Female , Humans , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
J Biomed Mater Res B Appl Biomater ; 100(7): 1729-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22807227

ABSTRACT

The in vitro cytotoxic response to endodontic sealers was assessed for one year. AH-Plus (AHP), Epiphany (EPH), EndoRez (ER), Guttaflow (GF), InnoEndo (IN), and Pulp Canal Sealer (PCS) were exposed to mouse osteoblasts and human monocytes after curing, 52 weeks of aging, and after resurfacing post-aging; cellular response was estimated by succinate dehydrogenase (SDH) activity. The effect of materials on TNFα secretion from activated (LPS) and inactivated monocytes also was measured. Cell responses were compared with ANOVA and Tukey post hoc analysis (α = 0.05). Initially, all materials except GF suppressed osteoblastic SDH activity compared with Teflon (Tf) controls. SDH activity in cells exposed to some aged sealers improved significantly; but IN and ER remained cytotoxic. When aged materials were resurfaced then tested, AHP, ER, GF, and IN did not change. EPH and PCS were more toxic. Monocytes responded similarly to the osteoblasts. No endodontic sealer activated monocytic TNFα secretion (p > 0.05 vs. -LPS Tf-controls). LPS-activated monocytes exposed to unresurfaced AHP and IN significantly suppressed TNFα secretion. When activated monocytes were exposed to the resurfaced sealers, differential suppression of TNFα secretion was observed for three of the four sealers tested (EPH, IN, and PCS). The results suggest that long-term aging may be a useful adjunct to in vitro assessment of these materials.


Subject(s)
Cytotoxins/pharmacology , Materials Testing/methods , Monocytes/metabolism , Osteoblasts/metabolism , Root Canal Filling Materials/pharmacology , Animals , Cell Line , Humans , Lipopolysaccharides/pharmacology , Mice , Monocytes/cytology , Osteoblasts/cytology , Time Factors , Tumor Necrosis Factor-alpha/biosynthesis
4.
J Biomed Mater Res B Appl Biomater ; 97(1): 49-57, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21290574

ABSTRACT

Recent studies have reported that sealers may alter the secretion of specific cytokines from THP1 monocytic cells in vitro. In this study, a cytokine array was used to determine if endodontic sealers changed secretion of 42 cytokines. White mineral trioxide aggregate (WMTA), MTA preparation (CS), AH-Plus (AHP), and Pulp Canal Sealer (PCS) were mixed, allowed to set for 72 h, then "aged" in buffered-saline for 12 weeks. Aged specimens were placed in direct contact with THP1 for 72 h and their cytotoxicity (MTT assay) was assessed. Materials that were not severely toxic were then exposed to THP1 with or without lipolysaccharide (LPS), and the culture medium was assayed for cytokine secretion. Secretion of cytokines was quantified using infrared scanning (Odyssey(®)); replicate pairs were averaged. PCS severely suppressed MTT activity and was not assessed for its influence on cytokine secretion. WMTA, CS, and AHP induced a broad-based increase in cytokine secretion (>20% vs. Teflon controls), but AHP induced the greatest increase (>100% in 17 of 42 cytokines). The effects of the sealers on LPS-activated THP1 were biphasic, with some increases and decreases cytokine secretion of >20%, but few larger effects. This work shows endodontic sealers may alter the secretion of a broad cross section of cytokines from monocytic cells.


Subject(s)
Monocytes/metabolism , Monokines/metabolism , Root Canal Filling Materials/adverse effects , Root Canal Filling Materials/pharmacology , Cell Culture Techniques , Cell Survival/drug effects , Humans , Lipopolysaccharides/pharmacology , Materials Testing/methods
5.
J Biomed Mater Res B Appl Biomater ; 95(2): 380-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20862766

ABSTRACT

The in vitro cytotoxicity of five endodontic sealers was measured >8-12 weeks using L929 mouse fibroblasts, osteoblastic cells (ROS) 17/2.8 rat osteoblasts, and MC3T3-E1 mouse osteoblasts. Discs (n = 6) of AH-plus Jet (AHP), two versions of Endo Rez (ER, ERx), Epiphany (EPH), and Pulp Canal Sealer (PCS) were prepared. The sealers and Teflon (Tf, negative control) were placed in direct contact with cells after immersion in phosphate-buffered saline for 1-12 wk. Cellular succinate dehydrogenase (SDH) activity was estimated using the MTT method (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole), and activities were normalized to Teflon® controls. The cellular responses to the materials were compared using analysis of variance with Tukey posthoc analyses (α = 0.05). Initially, all sealers suppressed normalized SDH activity of L929 fibroblasts by >90%. After 12 weeks of immersion in saline, AHP exhibited the SDH activity above Tf (120%), followed by ERx (78%), ER (58%), PCS (38%), and EPH (28%), all statistically distinct (p < 0.05). In general, the three cell lines responded similarly to the sealers. However, AHP caused unique responses: ROS cells were significantly (p < 0.05) less sensitive initially, and AHP was severely cytotoxic to MC3T3 cells (<35% of Tf) through 8 weeks. The data suggest that with "aging" in saline, current endodontic sealers decrease in in vitro cytotoxicity at different rates.


Subject(s)
Root Canal Filling Materials , Animals , Cell Line , Mice , Reproducibility of Results
6.
J Biomed Mater Res B Appl Biomater ; 93(2): 297-303, 2010 May.
Article in English | MEDLINE | ID: mdl-20235188

ABSTRACT

Few published studies describe the biological properties of calcium phosphate cements (CPCs) for dental applications. We measured several biologically relevant properties of 3 CPCs over an extended (8 wk) interval. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light-activated modified polyalkenoic acid, or 35% w/w polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs, respectively. Set cements were placed in direct contact with L929 fibroblasts for up to 8 weeks. Media Ca(+2) and pH were determined by atomic absorption spectroscopy and pH electrode respectively. Cell mitochondrial function was measured by MTT assay. Type I cements suppressed mitochondrial activity > 90% (vs. Teflon controls), but significantly (p < 0.05) improved to control levels over 8 weeks. Type II cements suppressed mitochondrial activity > 90% at all times. Type III cements elevated mitochondrial activity significantly after 7 wks. The pH profiles approached neutrality by 24 h, and all cements released calcium into the storage medium at all periods (24 h - 8 wk). We concluded that several types of cements had long-term biological profiles that show promise for dental applications.


Subject(s)
Calcium Phosphates/pharmacology , Calcium/analysis , Dental Cements/pharmacology , Fibroblasts/metabolism , Materials Testing , Animals , Calcium/metabolism , Calcium Phosphates/chemistry , Cell Line , Dental Cements/chemistry , Fibroblasts/cytology , Hydrogen-Ion Concentration , Mice , Mitochondria/metabolism , Time Factors
7.
J Biomed Mater Res A ; 93(3): 864-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-19701910

ABSTRACT

Titanates are inorganic compounds with high affinity for specific metal ions or metal compounds, including gold. We have previously demonstrated that both monosodium titanate (MST) and amorphous peroxo-titanate (APT) alone do not suppress cellular metabolism of several cell types, and we have shown that MST and APT adsorb and release gold compounds in biological salt solutions. In the current study, we extend this work and show that MST and APT loaded with two gold compounds deliver sufficient levels of these compounds to alter the metabolism of mammalian cells. Fibroblasts (L929) or monocytes (THP1) were exposed to MST and APT loaded with either Au(III) or Auranofin(R), a Au(I)-organic compound, for 24-72 h, after which succinate dehydrogenase (SDH) activity of the cells was measured using the MTT method. MST or APT alone did not suppress SDH activity of either cell type. AF and Au(III) alone suppressed SDH activity completely above 2 muM or 300 muM, respectively. APT and MST loaded with either gold compound suppressed L929 fibroblast SDH activity by 30-80% after 72 h, but Au(III)-loaded APT was more potent than AF-loaded APT. Monocyte SDH activity was not affected by any loaded titanate. Our results suggest that titanates could be used for solid phase delivery of metal compounds to affect mammalian cell function of some types of cells.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/metabolism , Gold Compounds/metabolism , Monocytes/drug effects , Monocytes/metabolism , Oxides/pharmacology , Titanium/pharmacology , Animals , Auranofin/pharmacology , Cell Death/drug effects , Cell Line , Humans , Mice , Time Factors
8.
J Biomed Mater Res B Appl Biomater ; 92(2): 525-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20024965

ABSTRACT

Endosseous dental implants use is increasing in patients with systemic conditions that compromise wound healing. Manufacturers recently have redesigned implants to ensure more reliable and faster osseointegration. One design strategy has been to create a porous phosphate-enriched titanium oxide (TiUnite) surface to increase surface area and enhance interactions with bone. In the current study, the corrosion properties of TiUnite implants were studied in cultures of monocytic cells and solutions simulating inflammatory and hyperglycemic conditions. Furthermore, to investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties, the enhanced surface implants as well as machined titanium implants were placed into human cadaver mandibular bone, the bone removed, and the corrosion properties measured. Implant corrosion behavior was characterized by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy. In selected samples, THP1 cells were activated with lipopolysaccharide prior to implant exposure to simulate an inflammatory environment. No significant differences in corrosion potentials were measured between the TiUnite implants and the machined titanium implants in previous studies. TiUnite implants exhibited lower corrosion rates in all simulated conditions than observed in PBS, and EIS measurements revealed two time constants which shifted with protein-containing electrolytes. In addition, the TiUnite implants displayed a significantly lower corrosion rate than the machined titanium implants after placement into bone. The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface titanium implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone.


Subject(s)
Dental Implants , Hyperglycemia/pathology , Inflammation/pathology , Phosphates/chemistry , Titanium/chemistry , Bone and Bones/pathology , Cadaver , Cell Line , Corrosion , Electrochemistry , Electrolytes , Glucose/pharmacology , Humans , Lipopolysaccharides/pharmacology , Mandible/pathology , Microscopy, Electron, Scanning , Microscopy, Polarization , Monocytes/chemistry , Monocytes/metabolism , Stress, Mechanical , Surface Properties , Wound Healing
9.
J Biomed Mater Res B Appl Biomater ; 91(2): 489-496, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19701912

ABSTRACT

Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion-exchange materials with high affinity for several heavy metal ions and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APTs are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro and then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials versus metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that "biodelivery" by metal-APT materials may be cell type-specific. Therefore, it appears that APTs are plausible solid-phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Metals/administration & dosage , Oxides/chemistry , Titanium/chemistry , Cell Line , Coloring Agents , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Humans , Metals/pharmacology , Metals/toxicity , Metals, Heavy/administration & dosage , Metals, Heavy/pharmacology , Metals, Heavy/toxicity , Mitochondria/drug effects , Succinate Dehydrogenase/metabolism , Tetrazolium Salts , Thiazoles
10.
J Biomed Mater Res B Appl Biomater ; 91(2): 839-844, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19572299

ABSTRACT

Dental endodontic sealers are in intimate contact with tissues around the root apex (periapical area) for extended periods. New endodontic sealers have been developed in the past decade, but the biological responses to many new products are not well documented. In this study, we assessed in vitro monocytic cytotoxic and inflammatory responses to several contemporary endodontic sealers. AH-Plus (AH), Pulp Canal Sealer (PC), Epiphany (EPH), Endo-Rez (ER), and an experimental Endo-Rez (ERx) were initially placed in buffered-saline for 12 weeks to simulate in vivo use. After "aging," specimens were placed in direct contact with THP1 monocytes for 72 h and their cytotoxicity (mitochondrial response; MTT) or ability to trigger or suppress cytokine secretion (ELISA; TNFalpha, IL1beta, IL=6; +/- lipopolysaccharide (LPS) exposure) were measured relative to Teflon (Tf) negative controls. Cellular responses among conditions were compared with ANOVA and Tukey post-hoc analysis (alpha = 0.05). Two of the five sealers, EPH and PC, still suppressed cell mitochondrial activity by 70% or more after 12 weeks of conditioning in saline. No sealer alone activated monocytic TNFalpha, IL1beta, or IL6 secretion (p > 0.05 vs. +LPS controls). When THP1 were activated by LPS after exposure to the sealers, differential suppression of TNFalpha, IL1beta, and IL6 secretion was observed for two of the five sealers tested. (EPH and PC) This data suggest that common endodontic sealers do not activate monocytic TNFalpha, IL1beta, and IL6 secretion in vitro by themselves, but degradation products of the sealers may suppress activation of monocytes.


Subject(s)
Dental Cements/therapeutic use , Pulpitis/prevention & control , Biocompatible Materials , Cell Survival/drug effects , Cytokines/metabolism , Dental Cements/chemical synthesis , Enzyme-Linked Immunosorbent Assay , Humans , Lipopolysaccharides/pharmacology , Mitochondria/drug effects , Monocytes/drug effects , Monocytes/metabolism
11.
J Biomed Mater Res B Appl Biomater ; 88(2): 358-65, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18437699

ABSTRACT

Nickel-containing alloys are used in dentistry because of their low cost, but poor corrosion behavior increases their risk of causing adverse biological responses. Intraorally, nickel-containing alloys accumulate bacterial plaque that triggers periodontal inflammation via toxins such as lipopolysaccharide (LPS). Recent evidence suggests that in monocytes, Ni(II) amplifies LPS-induced secretion of several cytokines that mediate periodontal destruction. Thus, we investigated the effects of Ni(II), with or without LPS, on the secretion of a broader array of cytokines from monocytes. We then measured monocytic expression of two proteins, Nrf2 and thioredoxin-1 (Trx1), that influence the regulation of cytokine secretion. Cytokine arrays were used to measure the effects of 0-50 microM Ni(II) on cytokine secretion from human THP1 monocytes, with or without LPS activation. Immunoblots were used to estimate Nrf2 and Trx1 levels. Our results indicate that both Ni(II) alone and Ni(II) with LPS have broad-based effects on cytokine secretion. Ni(II) increased Nrf2 levels by threefold, and LPS amplified the effects of Ni(II) by 10-fold. Trx1 levels did not change under any condition tested. Our results suggest that Ni(II)-induced changes in cytokine secretion by monocytes are diverse and may be influenced by Nrf2 but are not likely influenced by changes in whole-cell Trx1 levels.


Subject(s)
Cytokines/metabolism , Monocytes/drug effects , Monocytes/metabolism , Nickel/pharmacology , Cations/chemistry , Cell Line , Humans , NF-E2-Related Factor 2/metabolism , Nickel/chemistry , Thioredoxins/metabolism
12.
J Biomed Mater Res B Appl Biomater ; 88(2): 474-81, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18561292

ABSTRACT

The effects of hyperglycemia, altered cell function, or inflammatory mediators on implant corrosion are not well studied; yet, these effects are critical to implant biocompatibility and osseointegration. Because implant placement is burgeoning, patients with medically compromising systemic conditions such as diabetes are increasingly receiving implants, and the role of other inflammatory diseases on implant corrosion also needs investigation. In the current study, the corrosion properties of commercially available, machined titanium implants were studied in blood, cultures of monocytic cells, and solutions containing elevated dextrose concentrations. Implant corrosion was estimated by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy (EIS) for 26 h. In selected samples, THP1 monocytic cells were activated for 2 h with Lipopolysaccharide prior to implant exposure, and IL-1beta secretion was measured to assess the affect of the implants on monocyte activation. Implants under conditions of inflammatory stress exhibited more negative E(corr) values, suggesting an increased potential for corrosion. Linear polarization measurements detected increased corrosion rates in the presence of elevated dextrose conditions over PBS conditions. EIS measurements suggested that implants underwent surface passivation reactions that may have limited corrosion over the short term of this test. This result was supported by cyclic polarization tests. IL-1beta secretion was not altered under conditions of corrosion or implant exposure. The results suggest that inflammatory stress and hyperglycemia may increase the corrosion of dental endosseous titanium-based implants, but that longer, more aggressive electrochemical conditions may be necessary to fully assess these effects.


Subject(s)
Dental Implants , Titanium/chemistry , Cell Line , Corrosion , Humans , Inflammation , Materials Testing
13.
J Prosthet Dent ; 99(6): 455-60, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18514667

ABSTRACT

STATEMENT OF PROBLEM: Alloys with high nickel content have been increasingly used for dental prostheses. These alloys have excellent hardness, elastic modulus, and strength, yet have high corrosion rates when exposed to chemical or physical forces that are common intraorally. PURPOSE: The purpose of the current study was to measure the susceptibility of several types of nickel-based alloys to brushing abrasion relative to gold- and palladium-based alloys. MATERIAL AND METHODS: Au-Pt, Au-Pd, Pd-Ag, Ni-Cr, and Ni-Cr-Be dental alloys were brushed with a toothbrush (Oral-B Soft) and toothpaste (Ultrabrite) in a linear brushing machine, then the surface roughness was measured by profilometry (R(a), R(v), R(p)). Specimens (n=4) were brushed for 48 hours in a saline solution (pH 7). The effect of brushing was determined using 2-sided t tests (alpha=.05), and roughness among alloys postbrushing was compared using 1-way ANOVA with Tukey post hoc analyses (alpha=.05). RESULTS: All polished alloy surfaces (before brushing) had roughnesses of 1 microm (R(a)). Ni-Cr alloys without Be had a postbrushing surface roughness of 0.25 microm (R(a)). Postbrushing roughness of all other alloys ranged from 0.1-0.25 microm (R(a)). R(v) and R(p) values behaved similarly to R(a) values for all alloys. CONCLUSIONS: Although they have many excellent mechanical properties, Ni-Cr-Be alloys may be prone to degradation from brushing.


Subject(s)
Dental Alloys/chemistry , Gold Alloys/chemistry , Nickel/chemistry , Palladium/chemistry , Toothbrushing/instrumentation , Beryllium/chemistry , Chromium Alloys/chemistry , Dental Polishing , Hardness , Humans , Materials Testing , Sodium Chloride/chemistry , Stress, Mechanical , Surface Properties , Time Factors , Toothpastes/chemistry
14.
J Biomed Mater Res A ; 87(1): 229-35, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18092353

ABSTRACT

Angioplasty with stent placement is commonly used to treat coronary atherosclerosis. However, 20-40% of stainless steel stents restenose within 6 months via a prolonged inflammatory response mediated by monocytic infiltration and cytokine secretion. In the current study, we tested a hypothesis that blood flow and monocytes interact to alter stent corrosion. We assessed the effects of THP1 monocytes on the corrosion rate of 316L stainless steel (316LSS) under shear stress (0.5-50 dyn/cm(2)). In addition, THP1 cytokine secretion was determined using cytokine arrays and ELISA analyses. Data were compared using ANOVA and Tukey post hoc analysis (alpha = 0.05). Monocytes significantly lowered 316LSS corrosion rates without limiting current density. However, shear stress alone did not alter the corrosion rate of 316LSS. THP1 cells adhered to the 316LSS surface at all flow rates. Exposure to the 316LSS/corrosion test under high fluid flow rates increased (>twofold) the secretion of 7 of the 42 cytokines tested (angeogenin, GRO, I309, interleukin 8, interleukin 6, interleukin 1beta, and macrophage chemoattractant protein-1). Each of these cytokines play a role in wound healing, macrophage differentiation, and cell proliferation, all hallmarks of in-stent restenosis. Furthermore, only IL8 levels were significantly higher than any of the system controls during the 316LSS/corrosion test conditions. The IL8 levels from the 316LSS/corrosion tests were not significantly different from the +LPS control. Together, these data suggest that monocytic cells maybe activated by exposure to 316LSS stents and could contribute to in-stent restenosis and altered corrosion of the stent.


Subject(s)
Monocytes/cytology , Shear Strength , Stainless Steel/chemistry , Stents , Analysis of Variance , Angioplasty, Balloon, Coronary , Biocompatible Materials/chemistry , Blood Flow Velocity , Cell Line , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Coronary Restenosis/immunology , Corrosion , Cytokines/immunology , Cytokines/metabolism , Electrochemistry , Humans , Interleukin-8/immunology , Interleukin-8/metabolism , Lipopolysaccharides/immunology , Materials Testing , Monocytes/immunology , Monocytes/metabolism , Stress, Mechanical
15.
Dent Mater ; 24(4): 450-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17675143

ABSTRACT

OBJECTIVES: The use of lithium disilicate dental ceramics is increasing in dentistry and previous reports have suggested that they may have greater biological risks than previously thought. We tested a hypothesis that composition and processing influence the biological properties of these ceramics. METHODS: The cytotoxicity of two machined and three pressed lithium disilicate materials (n=6) were tested in vitro using mouse fibroblasts in direct contact with the materials for 72h. Cellular response was estimated by mitochondrial succinate dehydrogenase activity (MTT method). Mitochondrial activity was expressed as a percentage of Teflon controls, then compared to Teflon using 2-sided t-tests (alpha=0.05). Polished materials were aged in artificial saliva and tested for cytotoxicity periodically over 6 weeks, then were repolished (320grit SiC paper), aged and tested again for 4 weeks. RESULTS: All materials significantly (50-70%) suppressed cellular mitochondrial activity in the initial week, but suppression decreased by 25-30% over the next 2 weeks. In weeks 4 and 6 some materials exhibited a cytotoxic 'relapse' of 10-20%. The cytotoxic response was no different for machined or pressed materials, but the presence of ZnO had at least an association with longer-term cytotoxicity and relapse. Repolishing to 320grit did not increase cytotoxicity significantly. SIGNIFICANCE: Our results suggest that lithium disilicates are not biologically inert, and that many have a similar cytotoxicity dynamic regardless of small differences in composition or processing.


Subject(s)
Dental Porcelain/toxicity , Fibroblasts/drug effects , Lithium Compounds/toxicity , Silicates/toxicity , Animals , Cells, Cultured , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/enzymology
16.
Dent Mater ; 24(6): 765-72, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17959236

ABSTRACT

OBJECTIVES: Human blood levels of mercury are commonly 10nM, but may transiently reach 50-75nM after dental amalgam placement or removal. Controversy persists about the use of mercury because the effects of these 'trace' levels of mercury are not clear. Concentrations of mercury > or =5000nM unequivocally alter redox balance in blood cells including monocytes. In the current study, we tested a hypothesis that concentrations of mercury <100nM altered levels and activities of key proteins that maintain monocytic redox balance. METHODS: Human THP1 monocytes were exposed to 10-75nM of Hg(II) for 6-72h, with or without activation by lipopolysaccharide (LPS). The redox management proteins Nrf2 and thioredoxin-1 (Trx1) were separated by electrophoresis, then quantified by immunoblotting. The activity of the seleno-enzyme thioredoxin reductase (TrxR1), important in maintaining Trx1 redox balance, was measured by cell-free and cell-dependent assays. RESULTS: Concentrations of Hg(II) between 10-75nM increased Nrf2 levels (3.5-4.5 fold) and decreased Trx1 levels (2-3 fold), but these changes persisted <24h. Hg(II) potently inhibited (at concentrations of 5-50nM) TrxR1 activity in both cell-free and intracellular assays. Furthermore, Hg(II) transiently amplified LPS-induced Nrf2 levels by 2-3 fold and limited LPS-induced decreases in Trx1. All effects of Hg(II) were mitigated by pre-adding N-acetyl-cysteine (NAC) or sodium selenide (Na2SeO3), supplements of cellular thiols and selenols, respectively. SIGNIFICANCE: Our results suggest that nanomolar concentrations of Hg(II) transiently alter cellular redox balance in monocytes that trigger changes in Nrf2 and Trx1 levels. These changes indicate that monocytes have a capacity to adapt to trace concentrations of Hg(II) that are introduced into the bloodstream after dental amalgam procedures or fish consumption. The ability of monocytes to adapt suggests that low levels of mercury exposure from dental amalgam may not overtly compromise monocyte function.


Subject(s)
Dental Materials/pharmacology , Mercury/pharmacology , Monocytes/drug effects , NF-E2-Related Factor 2/drug effects , Thioredoxin Reductase 1/drug effects , Thioredoxins/drug effects , Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cells, Cultured , Electrophoresis , Enzyme Inhibitors/pharmacology , Free Radical Scavengers/pharmacology , Humans , Immunoblotting , Lipopolysaccharides/pharmacology , Materials Testing , Monocytes/enzymology , Monocytes/metabolism , Oxidation-Reduction , Selenium Compounds/pharmacology , Thioredoxin Reductase 1/antagonists & inhibitors
17.
Biomaterials ; 27(31): 5348-56, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16806455

ABSTRACT

Nickel is a component of biomedical alloys that is released during corrosion and causes inflammation in tissues by as yet unknown mechanisms. Recent data show that Ni(II) at concentrations of 10-50 microM amplifies lipopolysaccharide-triggered, NFkappaB-mediated cytokine secretion from monocytes. In the current study, we tested the hypothesis that Ni(II) amplifies cytokine secretion by activating the Nrf2 antioxidant pathway rather than by enhancing activity of the NFkappaB signaling pathway. Human THP1 monocytes were exposed to Ni(II) concentrations of 10-30 microM for 6-72 h, then immunoblots of whole-cell lysates or cytosolic and nuclear proteins were used to detect changes in Nrf2 or NFkappaB signaling. Our results show that Ni(II) increased (by 1-2 fold) whole-cell Nrf2 levels and nuclear translocation of Nrf2, and amplified lipopolysaccharide (LPS)-induction of Nrf2 (by 3-5 fold), but had no detectable effect on the initial activation or nuclear translocation of NFkappaB. Because Nrf2 target gene products are known regulators of NFkappaB nuclear activity, our results suggest that Ni(II) may affect cytokine secretion indirectly via modulation of the Nrf2 pathway.


Subject(s)
Monocytes/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nickel/administration & dosage , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Cell Line , Dose-Response Relationship, Drug , Humans , Signal Transduction/drug effects
18.
J Biomed Mater Res A ; 79(1): 16-22, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16758452

ABSTRACT

A goal of treatment in periodontal therapy is to regenerate a new fibroblastic attachment rather than to repair lost attachment with a long junctional epithelium. To date, there is no evidence that fibroblastic attachment formed during regeneration is stronger or less susceptible to periodontal breakdown than a long junctional epithelial attachment. We measured the rate and strength of attachment of epithelial cells (NHEK) and periodontal ligament fibroblasts (PDLF) cultured individually and cocultured to dentin surfaces to determine which cell type has a faster attachment rate and greater adhesive strength to human dentin, and whether the cell types attach independently. Longitudinal dentin slices were seeded with either PDLF or NHEK for 2 or 24 h. The specimens were placed into a parallel plate flow chamber and defined laminar shear stresses were applied. Shear stress was created by step increases in fluid flow rate. Effluent fluid was collected and cell numbers (detached) were counted using a hemocytometer. Cocultures of PDLF and NHEK at three seeding ratios (10:1, 1:1, 1:10) were also tested. Each cell type attached equally well to polystyrene or dentin. PDLF showed a stronger attachment to polystyrene and dentin at 24 versus 2 h. NHEK attached to polystyrene or dentin equally well at 2 and 24 h. NHEK were more strongly attached after 2 h when compared to PDLF. PDLF were more strongly attached after 24 h versus NHEK. When NHEK and PDLF were seeded together on dentin at a 1:1 ratio, PDLF appeared to be more strongly attached than NHEK at 2 but not 24 h. At a ratio of 10 PDLF:1 NHEK, PDLF appeared to be more strongly attached at 2 and 24 h. At a ratio of 1 PDLF:10 NHEK, NHEK appeared to be more strongly attached at 2 h, but PDLF showed a trend of stronger attachment at 24 h. We conclude that epithelial cells attach more quickly to dentin surfaces than PDLF, but do not demonstrate increased attachment strength over time (PDLF do show increased attachment strength overtime). The purported advantages of periodontal regeneration over periodontal repair are supported by our results. Furthermore, our results support the concept of guided tissue regeneration. On the basis of on cellular competition experiments, epithelial cells and PDLF do not act independently, because epithelial cells enhanced the attachment rate of PDLF.


Subject(s)
Dentin/metabolism , Epithelial Cells/physiology , Fibroblasts/physiology , Periodontal Ligament/cytology , Cell Adhesion/physiology , Cells, Cultured , Humans , Periodontal Ligament/physiology
19.
Toxicol In Vitro ; 20(6): 882-90, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16510263

ABSTRACT

UNLABELLED: Thioredoxin reductase (TrxR) reduces thioredoxin (Trx), thereby contributing to cellular redox balance, facilitating the synthesis of deoxy-ribose sugars for DNA synthesis, and regulating redox-sensitive gene expression. Auranofin is a gold compound that potently inhibits TrxR. This inhibition is one suspected mechanism of auranofin's therapeutic benefit in the treatment of rheumatoid arthritis. The use of other gold compounds to treat cancer or inflammatory disease may rely on their ability to inhibit TrxR. In the current study, we tested the hypothesis that a variety of gold compounds may inhibit TrxR. METHODS: We exposed rat-TrxR1 to auranofin, gold sodium thiomalate, sodium aurothiosulfate, triphenyl phosphine gold chloride, or gold acetate, and measured TrxR activity ex vivo. We then compared TrxR1 inhibitory levels of gold compounds to those that inhibited mitochondrial activity of THP1 monocytes and OSC2 epithelial cells, estimated by succinate dehydrogenase activity. RESULTS: All gold compounds inhibited TrxR1 at concentrations ranging from 5 to 4000 nM (50% inhibitory concentration). The oxidation state of gold did not correlate with inhibitory potency, but ligand configuration was important. Au(I)-phosphine compounds (triphenyl phosphine gold chloride and auranofin) were the most potent inhibitors of TrxR. All TrxR1 inhibitory concentrations were sublethal to mitochondrial activity in both THP1 and OSC2 cells. CONCLUSIONS: Diverse types of gold compounds may be effective inhibitors of TrxR1 at concentrations that do not suppress cellular mitochondrial function. Inhibition may be optimized to some degree by altering the ligand configuration of the compounds. These results support future study of a variety of Au compounds for therapeutic development as inhibitors of TrxR1.


Subject(s)
Cytosol/enzymology , Enzyme Inhibitors/toxicity , Gold/toxicity , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Animals , Auranofin/toxicity , Cell Line , Dithionitrobenzoic Acid/metabolism , Gold Compounds/toxicity , Gold Sodium Thiomalate/toxicity , Humans , NADP/metabolism , Rats , Thioredoxin Reductase 1
20.
Dent Mater ; 22(8): 759-64, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16364420

ABSTRACT

OBJECTIVES: The current study tested the hypothesis that the extracellular environment mediates mitochondrial suppression of oral epithelial cells and fibroblasts by blue light. METHODS: We exposed Balb fibroblasts (Balb), normal human epidermal keratinocytes (NHEK), and oral squamous carcinoma cells (OSC2) to blue light (30-120J/cm2) in different cell-culture media and in phosphate buffered saline (PBS). Mitochondrial activity (MTT method) was used to assess cellular response 72 h post-light exposure. Cell-culture media were replaced or supplemented before or after light exposure to assess the variables of exposure time and medium degradation as mediators of blue light-induced effects. RESULTS: Mitochondrial activity of NHEK was not suppressed by exposure to blue light regardless of extracellular conditions. The mitochondrial activity of OSC2 and Balb cells was suppressed most when cells were exposed to light in cell-culture medium (versus PBS). Blue light suppressed mitochondrial activity more when irradiated medium remained in contact with the cells at least 1h, indicating a time-dependence of the medium effects. Neither a replacement nor a supplementation of medium components reduced blue light-induced mitochondrial suppression. SIGNIFICANCE: Our results suggest that tissue environments influence cellular responses to blue light and that these environments should be considered when assessing any biological effects of blue light during the photopolymerization of restorative resins.


Subject(s)
Culture Media , Light , Mitochondria/radiation effects , Animals , Buffers , Carcinoma, Squamous Cell/ultrastructure , Cell Line , Cell Line, Tumor , Coloring Agents/pharmacology , Culture Media/radiation effects , Dose-Response Relationship, Radiation , Epithelial Cells/radiation effects , Fibroblasts/radiation effects , Humans , Keratinocytes/radiation effects , Mice , Mice, Inbred BALB C , Mouth Neoplasms/ultrastructure , Phenolsulfonphthalein/pharmacology , Phosphates , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Sodium Chloride , Succinate Dehydrogenase/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...