Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Blood ; 123(17): 2732-9, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24591205

ABSTRACT

Neutralizing anti-factor VIII (FVIII) antibodies that develop in patients with hemophilia A and in murine hemophilia A models, clinically termed "inhibitors," bind to several distinct surfaces on the FVIII-C2 domain. To map these epitopes at high resolution, 60 recombinant FVIII-C2 proteins were generated, each having a single surface-exposed residue mutated to alanine or a conservative substitution. The binding kinetics of these muteins to 11 monoclonal, inhibitory anti-FVIII-C2 antibodies were evaluated by surface plasmon resonance and the results compared with those obtained for wild-type FVIII-C2. Clusters of residues with significantly altered binding kinetics identified "functional" B-cell epitopes, defined as those residues contributing appreciable antigen-antibody avidity. These antibodies were previously shown to neutralize FVIII activity by interfering with proteolytic activation of FVIII by thrombin or factor Xa, or with its binding to phospholipid surfaces, von Willebrand factor, or other components of the intrinsic tenase complex. Fine mapping of epitopes by surface plasmon resonance also indicated surfaces through which FVIII interacts with proteins and phospholipids as it participates in coagulation. Mutations that significantly altered the dissociation times/half-lives identified functionally important interactions within antigen-antibody interfaces and suggested specific sequence modifications to generate novel, less antigenic FVIII proteins with possible therapeutic potential for treatment of inhibitor patients.


Subject(s)
Epitope Mapping , Factor VIII/chemistry , Point Mutation , Surface Plasmon Resonance , Alanine/chemistry , Amino Acids/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antigens/chemistry , Blood Coagulation , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes, B-Lymphocyte/chemistry , Humans , Mice , Mutagenesis , Mutation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Swine
2.
PLoS One ; 8(5): e61120, 2013.
Article in English | MEDLINE | ID: mdl-23667433

ABSTRACT

Evidence of antibody isotype/subtype switching may provide prognostic value regarding the state of immune responses to therapeutic proteins, e.g. anti-factor VIII (FVIII) antibodies that develop in many hemophilia A patients, clinically termed "inhibitors". A sensitive, high- information-content surface plasmon resonance (SPR) assay has been developed to quantify IgG subtype distributions and the domain specificity of anti-drug antibodies. Plasma samples from 22 subjects with an allo- or auto-immune reaction to FVIII were analyzed. Pre-analytical treatment protocols were developed to minimize non-specific binding and specific matrix interference due to von Willebrand factor-FVIII interactions. The dynamic range for IgG quantification was 0.2-5 µg/ml (∼1-33 nM), allowing characterization of inhibitor-positive samples. Subtype-specific monoclonal antibodies were used to quantify the IgG subtype distribution of FVIII-specific antibodies. Most samples obtained from multiply-infused inhibitor subjects contained IgG4 antibodies. Several distinct phenotypes were assigned based on the IgG subtype distribution: IgG1, IgG4, IgG1 & IgG4, and IgG1, IgG2 & IgG4. An IgG1-only response was found in mild/moderate HA subjects during early FVIII infusions, and analysis of serial samples followed antibody class switching as several subjects' immune responses developed. Competition studies utilizing a recombinant FVIII-C2 domain indicated 40-80% of FVIII-specific antibodies in most samples were directed against this domain.


Subject(s)
Antibody Formation/immunology , Factor VIII/immunology , Hemophilia A/immunology , Immunoglobulin G/immunology , Phenotype , Surface Plasmon Resonance/methods , Animals , Antibodies, Monoclonal/immunology , Hemophilia A/blood , Humans , Immunoglobulin G/classification , Mice
3.
MAbs ; 4(1): 69-83, 2012.
Article in English | MEDLINE | ID: mdl-22327431

ABSTRACT

Interleukin-21 (IL-21) is a type I four-helical bundle cytokine that exerts a variety of significant effects on many hematopoietic cells, including T and B lymphocytes and natural killer cells. IL-21 is produced predominantly by CD4+ T cells and natural killer T cells and, when aberrantly overexpressed, appears to play important roles in a wide variety of autoimmune disorders. To generate potential therapeutic reagents capable of inhibiting IL-21 for clinical use, we immunized human immunoglobulin transgenic mice with IL-21 and then identified and cloned a panel of human anti-human IL-21 binding monoclonal antibodies. IL-21 neutralizing and IL-21-binding, non-neutralizing antibodies were assigned to distinct epitope "bins" based on surface plasmon resonance competition studies. The most potent neutralizing antibodies had extremely high (sub pM) affinity for IL-21 and were able to block IL-21 activity in various biological assays using either an IL-21R-transfected pre-B-cell line or primary human B cells, and their neutralizing activity was, in some cases, superior to that of a soluble form of the high affinity heterodimeric IL-21 receptor. Characterization of this panel of IL-21 antibodies provided the basis for the selection of a therapeutic candidate antibody capable of inhibiting IL-21 activity for the treatment of autoimmune and inflammatory diseases.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Interleukins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Autoimmunity , B-Lymphocytes/immunology , CHO Cells , Cell Line , Cricetinae , Epitopes/immunology , Humans , Interleukins/administration & dosage , Interleukins/chemistry , Interleukins/genetics , Killer Cells, Natural/immunology , Mice , Mice, Transgenic , Precursor Cells, B-Lymphoid/immunology , Rabbits , Rats , Receptors, Interleukin-21/genetics , Receptors, Interleukin-21/immunology , T-Lymphocytes/immunology
4.
Cancer Lett ; 315(1): 18-27, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22036895

ABSTRACT

Elevated high mobility group A (HMGA) protein expression in pancreatic cancer cells is correlated with resistance to the chemotherapy agent gemcitabine. Here, we demonstrate use of HMGA-targeted AT-rich phosphorothioate DNA (AT-sDNA) aptamers to suppress HMGA carcinogenic activity. Cell growth of human pancreatic cancer cells (AsPC-1 and Miapaca-2) transfected with AT-sDNA were monitored after treatment with gemcitabine. Significant increases in cell death in AT-sDNA transfected cells compared to non-AT-rich sDNA treated cells were observed in both cell lines. The data indicate the potential use of HMGA targeted DNA aptamers to enhance chemotherapy efficacy in pancreatic cancer treatment.


Subject(s)
Adenocarcinoma/therapy , Antimetabolites, Antineoplastic/pharmacology , Aptamers, Nucleotide/pharmacology , Deoxycytidine/analogs & derivatives , HMGA Proteins/metabolism , Pancreatic Neoplasms/therapy , Phosphorothioate Oligonucleotides/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Cell Line, Tumor , Deoxycytidine/pharmacology , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphorothioate Oligonucleotides/genetics , Phosphorothioate Oligonucleotides/metabolism , Transfection , Xenograft Model Antitumor Assays , Gemcitabine
5.
J Mol Biomark Diagn ; 3(2)2012 Apr.
Article in English | MEDLINE | ID: mdl-26609466

ABSTRACT

Metabolic profiles of hydrophilic and lipophilic cell extracts from three cancer cell lines, Miapaca-2, Panc-1 and AsPC-1, and a non-cancerous pancreatic ductal epithelial cell line, H6C7, were examined by proton nuclear magnetic resonance spectroscopy. Over twenty five hydrophilic metabolites were identified by principal component and statistical significance analyses as distinguishing the four cell types. Fifteen metabolites were identified with significantly altered concentrations in all cancer cells, e.g. absence of phosphatidylgrycerol and phosphatidylcholine, and increased phosphatidylethanolamine and cholesterols. Altered concentrations of metabolites involved in glycerophospholipid metabolism, lipopolysaccharide and fatty acid biosynthesis indicated differences in cellular membrane composition between non-cancerous and cancer cells. In addition to cancer specific metabolites, several metabolite changes were unique to each cancer cell line. Increased N-acetyl groups in AsPC-1, octanoic acids in Panc-1, and UDP species in Miapaca-2 indicated differences in cellular membrane composition between the cancer cell lines. Induced glutamine metabolism and protein synthesis in cancer cells were indicated by absence of glutamine other metabolites such as acetate, lactate, serine, branched amino acids, and succinate. Knowledge of the specifically altered metabolic pathways identified in these pancreatic cancer cell lines may be useful for identifying new therapeutic targets and studying the effects of potential new therapeutic drugs.

6.
Arthritis Res Ther ; 12(2): R48, 2010.
Article in English | MEDLINE | ID: mdl-20302641

ABSTRACT

INTRODUCTION: B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) family that regulate B-cell maturation, survival, and function. They are overexpressed in a variety of autoimmune diseases and reportedly exist in vivo not only as homotrimers, but also as BLyS/APRIL heterotrimers. METHODS: A proprietary N-terminal trimerization domain was used to produce recombinant BLyS/APRIL heterotrimers. Heterotrimer biologic activity was compared with that of BLyS and APRIL in a 4-hour signaling assay by using transmembrane activator and CAML interactor (TACI)-transfected Jurkat cells and in a 4-day primary human B-cell proliferation assay. A bead-based immunoassay was developed to quantify native heterotrimers in human sera from healthy donors (n = 89) and patients with systemic lupus erythematosus (SLE; n = 89) or rheumatoid arthritis (RA; n = 30). Heterotrimer levels were compared with BLyS and APRIL homotrimer levels in a subset of these samples. RESULTS: The recombinant heterotrimers consisted mostly of one BLyS and two APRIL molecules. Heterotrimer signaling did not show any significant difference compared with APRIL in the TACI-Jurkat assay. Heterotrimers were less-potent inducers of B-cell proliferation than were homotrimeric BLyS or APRIL (EC(50), nMol/L: BLyS, 0.02; APRIL, 0.17; heterotrimers, 4.06). The soluble receptor fusion proteins atacicept and B-cell maturation antigen (BCMA)-immunoglobulin (Ig) neutralized the activity of BLyS, APRIL, and heterotrimers in both cellular assays, whereas B-cell activating factor belonging to the TNF family receptor (BAFF-R)-Ig neutralized only the activity of BLyS. In human sera, significantly more patients with SLE had detectable BLyS (67% versus 18%; P < 0.0001), APRIL (38% versus 3%; P < 0.0002), and heterotrimer (27% versus 8%; P = 0.0013) levels compared with healthy donors. Significantly more patients with RA had detectable APRIL, but not BLyS or heterotrimer, levels compared with healthy donors (83% versus 3%; P < 0.0001). Heterotrimer levels weakly correlated with BLyS, but not APRIL, levels. CONCLUSIONS: Recombinant BLyS/APRIL heterotrimers have biologic activity and are inhibited by atacicept and BCMA-Ig, but not by BAFF-R-Ig. A novel immunoassay demonstrated that native BLyS/APRIL heterotrimers, as well as BLyS and APRIL homotrimers, are elevated in patients with autoimmune diseases.


Subject(s)
Autoimmune Diseases/blood , B-Cell Activating Factor/blood , B-Cell Maturation Antigen/pharmacology , Cell Proliferation/drug effects , Recombinant Fusion Proteins/pharmacology , Tumor Necrosis Factor Ligand Superfamily Member 13/blood , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Humans , Interleukin-4/pharmacology , Jurkat Cells , Lymphocyte Activation/drug effects , Protein Multimerization , Recombinant Proteins
7.
Protein Eng Des Sel ; 23(3): 115-27, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20022918

ABSTRACT

Bispecific antibodies (bsAbs) present an attractive opportunity to combine the additive and potentially synergistic effects exhibited by combinations of monoclonal antibodies (mAbs). Current challenges for engineering bsAbs include retention of the binding affinity of the parent mAb or antibody fragment, the ability to bind both targets simultaneously, and matching valency with biology. Other factors to consider include structural stability and expression of the recombinant molecule, both of which may have significant impact on its development as a therapeutic. Here, we incorporate selection of stable, potent single-chain variable fragments (scFvs) early in the engineering process to assemble bsAbs for therapeutic applications targeting the cytokines IL-17A/A and IL-23. Stable scFvs directed against human cytokines IL-23p19 and IL-17A/A were isolated from a human Fab phage display library via batch conversion of panning output from Fabs to scFvs. This strategy integrated a step for shuffling V regions during the conversion and permitted the rescue of scFv molecules in both the V(H)V(L) and the V(L)V(H) orientations. Stable scFvs were identified and assembled into several bispecific formats as fusions to the Fc domain of human IgG1. The engineered bsAbs are potent neutralizers of the biological activity of both cytokines (IC(50) < 1 nM), demonstrate the ability to bind both target ligands simultaneously and display stability and productivity advantageous for successful manufacture of a therapeutic molecule. Pharmacokinetic analysis of the bsAbs in mice revealed serum half-lives similar to human mAbs. Assembly of bispecific molecules using stable antibody fragments offers an alternative to reformatting mAbs and minimizes subsequent structure-related and manufacturing concerns.


Subject(s)
Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , Interleukin-17/immunology , Interleukin-23/immunology , Protein Engineering , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacokinetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody Affinity , Databases, Protein , Escherichia coli/genetics , Female , Half-Life , Humans , Kinetics , Mice , Protein Stability , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism
8.
Mol Immunol ; 46(16): 3488-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19683345

ABSTRACT

Fab arm exchange by a stabilized anti-IL-31 IgG(4)S228P monoclonal antibody (mAb) was studied using physiologically relevant antibody concentrations and thiol exchange conditions, and directly compared to that of matched wild type IgG(4) (IgG(4)wt) and IgG(1) control antibodies. In vitro arm exchange between the test mAbs and a purified IgG(4)wt exchange partner was monitored using capillary isoelectric focusing and a size-exclusion peak shift assay. Arm exchange between the test mAbs and IgG exchange partners with unknown specificity was monitored using only the shift assay. Studies were performed using single isotype human and mouse mAbs, unfractionated human, mouse, and cynomolgus monkey IgG, and human serum as the sources of the exchange partners. In vitro studies using human serum demonstrated that anti-IL-31 IgG(4)S228P did not undergo significant Fab arm exchange with endogenous human IgG(4) whereas anti-IL-31 IgG(4)wt underwent rapid and extensive Fab arm exchange. The in vitro results were corroborated by in vivo studies in which mice were injected with a mixture of either form of the test mAb and an excess of non-specific human IgG(4) exchange partner.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Interleukins/chemistry , Interleukins/immunology , Macaca fascicularis , Mice
9.
J Immunol ; 180(1): 580-9, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18097060

ABSTRACT

Binding of Ag-Ab immune complexes to cellular FcgammaR promotes cell activation, release of inflammatory mediators, and tissue destruction characteristic of autoimmune disease. To evaluate whether a soluble FcgammaR could block the proinflammatory effects of immune complexes, recombinant human (rh) versions of FcgammaRIA, FcgammaRIIA, and FcgammaRIIIA were prepared. Binding of rh-FcgammaRIA to IgG was of high affinity (KD=1.7x10(-10) M), whereas rh-FcgammaRIIA and rh-FcgammaRIIIA bound with low affinity (KD=0.6-1.9x10(-6) M). All rh-FcgammaR reduced immune complex precipitation, blocked complement-mediated lysis of Ab-sensitized RBC, and inhibited immune complex-mediated production of IL-6, IL-13, MCP-1, and TNF-alpha by cultured mast cells. Local or systemic delivery only of rh-FcgammaRIA, however, reduced edema and neutrophil infiltration in the cutaneous Arthus reaction in mice. 125I-labeled rh-FcgammaRIA was cleared from mouse blood with a rapid distribution phase followed by a slow elimination phase with a t1/2gamma of approximately 130 h. The highest percentage of injected radioactivity accumulated in blood approximately liver approximately carcass>kidney. s.c. dosing of rh-FcgammaRIA resulted in lower serum levels of inflammatory cytokines and prevented paw swelling and joint damage in a murine model of collagen Ab-induced arthritis. These data demonstrate that rh-FcgammaRIA is an effective inhibitor of type III hypersensitivity.


Subject(s)
Immune Complex Diseases/drug therapy , Receptors, IgG/therapeutic use , Animals , Antigen-Antibody Complex/drug effects , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthus Reaction/drug therapy , Arthus Reaction/pathology , Complement System Proteins/immunology , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Humans , Immune Complex Diseases/pathology , Immunoglobulin G/metabolism , Mast Cells/immunology , Mice , Receptors, IgG/biosynthesis
10.
Semin Thromb Hemost ; 32 Suppl 1: 86-97, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16673270

ABSTRACT

Bleeding can be a serious complication of surgery, and topical thrombin is widely used as an adjunct to hemostasis in diverse surgical settings. The potent hemostatic properties of thrombin derive from its ability to activate platelets directly to aggregate and adhere to damaged vessels and to catalyze the formation simultaneously of a fibrin matrix. Application of exogenous thrombin bypasses the physiological process of generating a thrombin burst by directly initiating the terminal reactions of blood clot formation. Currently, thrombin used to control surgical bleeding is primarily from bovine plasma, with a small percentage from human plasma. Human thrombin isolated from pooled plasma carries the risk of transmitting plasma-borne pathogens or prion diseases. The bovine preparations have been associated with protein and preparative contaminants that pose potential risks of developing cross-reacting antibodies. There is a need for a pure therapeutic preparation of human thrombin. Recombinant human thrombin (rhThrombin) has been efficiently produced from a prethrombin-1 precursor obtained from Chinese hamster ovary cell culture. This rhThrombin is substantially free of process-derived contaminants and has been characterized extensively in terms of composition, primary, secondary, and tertiary structure, enzymatic activity; and in vivo pharmacology. In vivo studies of topically applied rhThrombin have shown it is effective in achieving hemostasis in a rabbit liver excisional wound model. Clinical studies are ongoing to evaluate the safety and efficacy of rhThrombin as an adjunct to hemostasis in patients undergoing surgery.


Subject(s)
Thrombin/chemistry , Thrombin/therapeutic use , Animals , Blood Loss, Surgical/prevention & control , Humans , Molecular Weight , Quality Control , Recombinant Proteins , Thrombin/genetics , Thrombin/isolation & purification
11.
Toxicol Pathol ; 33(4): 495-506, 2005.
Article in English | MEDLINE | ID: mdl-16036868

ABSTRACT

Factor XIII (FXIII) is a thrombin-activated protransglutaminase responsible for fibrin clot stabilization and longevity. Deficiency in FXIII is associated with diffuse bleeding and wound-healing disorders in humans. This report summarizes results from several studies conducted in adult cynomolgus monkeys (M. fascicularis) to evaluate the safety and pharmacokinetics of recombinant human factor XIII A(2) dimer (rFXIII). Intravenous slow bolus injection of rFXIII resulted in the expected formation of the heterotetramer rA(2)cnB(2), prolonged circulating half-life (5-7 days), and increased plasma transglutaminase activity. Recombinant FXIII was well tolerated as a single dose up to 20 mg/kg rFXIII (2840 U/kg), as repeated daily doses up to 6 mg/kg (852 U/kg) for 14 days, and as 3 repeated doses of 8 mg/kg (1136 U/kg) separated by 14 days. Overt toxicity occurred after a single intravenous injection of = 22.5 mg/kg rFXIII (3150 U/kg), or with 2 doses of = 12.5 mg/kg (1775 U/kg) administered within 72 hours. The rFXIII-mediated toxicity was expressed as an acute systemic occlusive coagulopathy. Evaluation of plasma samples from dosed animals demonstrated formation of cross-linked fibrin/fibrinogen oligomers and higher-order protein aggregates, which are hypothesized to be responsible for the observed vessel occlusion and associated embolic sequelae. These results demonstrate that rFXIII-mediated toxicity results from exaggerated pharmacological activity of the molecule at supraphysiological concentrations. The absence of observed toxicological effect with repeated intravenous doses up to 8 mg/kg (1136 U/kg) was used to support an initial clinical dose range of 0.014 to 0.35 mg/kg (2-50 U/kg).


Subject(s)
Blood Coagulation Disorders/chemically induced , Factor XIII/pharmacokinetics , Factor XIII/toxicity , Macaca fascicularis , Animals , Blood Coagulation Disorders/pathology , Coronary Vessels/drug effects , Coronary Vessels/pathology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Half-Life , Humans , Injections, Intravenous , Kidney/blood supply , Kidney/drug effects , Kidney/pathology , Male , Myocardium/pathology , Recombinant Proteins , Thrombosis/chemically induced , Thrombosis/pathology , Transglutaminases/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...