Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 37(8): 719-26, 2016 08.
Article in English | MEDLINE | ID: mdl-27158917

ABSTRACT

Identifying variants causal for complex genetic disorders is challenging. With the advent of whole-exome and whole-genome sequencing, computational tools are needed to explore and analyze the list of variants for further validation. Correlating genetic variants with subject phenotype is crucial for the interpretation of the disease-causing mutations. Often such work is done by teams of researchers who need to share information and coordinate activities. To this end, we have developed a powerful, easy to use Web application, ASPIREdb, which allows researchers to search, organize, analyze, and visualize variants and phenotypes associated with a set of human subjects. Investigators can annotate variants using publicly available reference databases and build powerful queries to identify subjects or variants of interest. Functional information and phenotypic associations of these genes are made accessible as well. Burden analysis and additional reporting tools allow investigation of variant properties and phenotype characteristics. Projects can be shared, allowing researchers to work collaboratively to build queries and annotate the data. We demonstrate ASPIREdb's functionality using publicly available data sets, showing how the software can be used to accomplish goals that might otherwise require specialized bioinformatics expertise. ASPIREdb is available at http://aspiredb.chibi.ubc.ca.


Subject(s)
Computational Biology/methods , Genetic Variation , Databases, Genetic , Exome , Genetic Predisposition to Disease , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Web Browser
2.
BMC Med Genet ; 15: 82, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25030379

ABSTRACT

BACKGROUND: DNA copy number variants (CNVs) are found in 15% of subjects with ID but their association with phenotypic abnormalities has been predominantly studied in smaller cohorts of subjects with detailed yet non-systematically categorized phenotypes, or larger cohorts (thousands of cases) with smaller number of generalized phenotypes. METHODS: We evaluated the association of de novo, familial and common CNVs detected in 78 ID subjects with phenotypic abnormalities classified using the Winter-Baraitser Dysmorphology Database (WBDD) (formerly the London Dysmorphology Database). Terminology for 34 primary (coarse) and 169 secondary (fine) phenotype features were used to categorize the abnormal phenotypes and determine the prevalence of each phenotype in patients grouped by the type of CNV they had. RESULTS: In our cohort more than 50% of cases had abnormalities in primary categories related to head (cranium, forehead, ears, eye globes, eye associated structures, nose) as well as hands and feet. The median number of primary and secondary abnormalities was 12 and 18 per subject, respectively, indicating that the cohort consisted of subjects with a high number of phenotypic abnormalities (median De Vries score for the cohort was 5). The prevalence of each phenotypic abnormality was comparable in patients with de novo or familial CNVs in comparison to those with only common CNVs, although a trend for increased frequency of cranial and forehead abnormalities was noted in subjects with rare de novo and familial CNVs. Two clusters of subjects were identified based on the prevalence of each fine phenotypic feature, with an average of 28.3 and 13.5 abnormal phenotypes/subject in the two clusters respectively (P < 0.05). CONCLUSIONS: Our study is a rare example of using standardized, deep morphologic phenotype clustering with phenotype/CNV correlation in a cohort of subjects with ID. The composition of the cohort inevitably influences the phenotype/genotype association, and our studies show that the influence of the de novo CNVs on the phenotype is less obvious in cohorts consisting of subjects with a high number of phenotypic abnormalities. The outcome of phenotype/genotype analysis also depends on the choice of phenotypes assessed and standardized phenotyping is required to minimize variability.


Subject(s)
DNA Copy Number Variations , Intellectual Disability/genetics , Comparative Genomic Hybridization , Databases, Genetic , Genetic Association Studies , Genetic Variation , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...