Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Disaster Med Public Health Prep ; 16(3): 885-888, 2022 06.
Article in English | MEDLINE | ID: mdl-33722331

ABSTRACT

OBJECTIVES: The aim of this study was to provide insights learned from disaster research response (DR2) efforts following Hurricane Harvey in 2017 to launch DR2 activities following the Intercontinental Terminals Company (ITC) fire in Deer Park, Texas, in 2019. METHODS: A multidisciplinary group of academic, community, and government partners launched a myriad of DR2 activities. RESULTS: The DR2 response to Hurricane Harvey focused on enhancing environmental health literacy around clean-up efforts, measuring environmental contaminants in soil and water in impacted neighborhoods, and launching studies to evaluate the health impact of the disaster. The lessons learned after Harvey enabled rapid DR2 activities following the ITC fire, including air monitoring and administering surveys and in-depth interviews with affected residents. CONCLUSIONS: Embedding DR2 activities at academic institutions can enable rapid deployment of lessons learned from one disaster to enhance the response to subsequent disasters, even when those disasters are different. Our experience demonstrates the importance of academic institutions working with governmental and community partners to support timely disaster response efforts. Efforts enabled by such experience include providing health and safety training and consistent and reliable messaging, collecting time-sensitive and critical data in the wake of the event, and launching research to understand health impacts and improve resiliency.


Subject(s)
Cyclonic Storms , Deer , Disaster Planning , Disasters , Animals , Humans , Industry
2.
Article in English | MEDLINE | ID: mdl-32053902

ABSTRACT

The Houston-Galveston-Brazoria (HGB) region faces numerous environmental and public health challenges from both natural disasters and industrial activity, but the historically disadvantaged communities most often impacted by such risks have limited ability to access and utilize big data for advocacy efforts. We developed HGBEnviroScreen to identify and prioritize regions of heightened vulnerability, in part to assist communities in understanding risk factors and developing environmental justice action plans. While similar in objectives to existing environmental justice tools, HGBEnviroScreen is unique in its ability to integrate and visualize national and local data to address regional concerns. For the 1090 census tracts in the HGB region, we accrued data into five domains: (i) social vulnerability, (ii) baseline health, (iii) environmental exposures and risks, (iv) environmental sources, and (v) flooding. We then integrated and visualized these data using the Toxicological Prioritization Index (ToxPi). We found that the highest vulnerability census tracts have multifactorial risk factors, with common drivers being flooding, social vulnerability, and proximity to environmental sources. Thus, HGBEnviroScreen is not only helping identify communities of greatest overall vulnerability but is also providing insights into which domains would most benefit from improved planning, policy, and action in order to reduce future vulnerability.


Subject(s)
Community Participation , Disasters , Environmental Exposure , Accidents, Occupational , Floods , Humans , Public Health , Risk Assessment , Risk Factors , Vulnerable Populations
3.
Environ Sci Technol ; 54(4): 2133-2142, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31995368

ABSTRACT

Diverse urban air pollution sources contribute to spatially variable atmospheric concentrations, with important public health implications. Mobile monitoring shows promise for understanding spatial pollutant patterns, yet it is unclear whether uncertainties associated with temporally sparse sampling and instrument performance limit our ability to identify locations of elevated pollution. To address this question, we analyze 9 months of repeated weekday daytime on-road mobile measurements of black carbon (BC), particle number (PN), and nitrogen oxide (NO, NO2) concentrations within 24 census tracts across Houston, Texas. We quantify persistently elevated, intermittent, and extreme concentration behaviors at 50 m road segments on surface streets and 90 m segments on highways relative to median statistics across the entire sampling domain. We find elevated concentrations above uncertainty levels (±40%) within portions of every census tract, with median concentration increases ranging from 2 to 3× for NO2, and >9× for NO. In contrast, PN exhibits elevated concentrations of 1.5-2× the domain-wide median and distinct spatial patterns relative to other pollutants. Co-located elevated concentrations of primary combustion tracers (BC and NOx) near 30% of metal recycling and concrete batch plant facilities within our sampled census tracts are comparable to those measured within 200 m of highways. Our results demonstrate how extensive mobile monitoring across multiple census tracts can quantitatively characterize urban air pollution source patterns and are applicable to developing effective source mitigation policies.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Environmental Monitoring , Particulate Matter , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...