Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 288, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459227

ABSTRACT

Sleep boosts the integration of memories, and can thus facilitate relational learning. This benefit may be due to memory reactivation during non-REM sleep. We set out to test this by explicitly cueing reactivation using a technique called targeted memory reactivation (TMR), in which sounds are paired with learned material in wake and then softly played during subsequent sleep, triggering reactivation of the associated memories. We specifically tested whether TMR in slow wave sleep leads to enhancements in inferential thinking in a transitive inference task. Because the Up-phase of the slow oscillation is more responsive to cues than the Down-phase, we also asked whether Up-phase stimulation is more beneficial for such integration. Our data show that TMR during the Up-Phase boosts the ability to make inferences, but only for the most distant inferential leaps. Up-phase stimulation was also associated with detectable memory reinstatement, whereas Down-phase stimulation led to below-chance performance the next morning. Detection of memory reinstatement after Up-state stimulation was negatively correlated with performance on the most difficult inferences the next morning. These findings demonstrate that cueing memory reactivation at specific time points in sleep can benefit difficult relational learning problems.


Subject(s)
Sleep, Slow-Wave , Humans , Sleep, Slow-Wave/physiology , Learning/physiology , Sleep/physiology , Cues , Sound
2.
Brain Sci ; 14(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38391689

ABSTRACT

Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.

3.
Commun Biol ; 7(1): 193, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365955

ABSTRACT

REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.


Subject(s)
Electroencephalography , Sleep, REM , Sleep, REM/physiology , Acoustic Stimulation , Cognition , Electrophysiology
5.
Elife ; 122023 06 23.
Article in English | MEDLINE | ID: mdl-37350572

ABSTRACT

It is now well established that memories can reactivate during non-rapid eye movement (non-REM) sleep, but the question of whether equivalent reactivation can be detected in rapid eye movement (REM) sleep is hotly debated. To examine this, we used a technique called targeted memory reactivation (TMR) in which sounds are paired with learned material in wake, and then re-presented in subsequent sleep, in this case REM, to trigger reactivation. We then used machine learning classifiers to identify reactivation of task-related motor imagery from wake in REM sleep. Interestingly, the strength of measured reactivation positively predicted overnight performance improvement. These findings provide the first evidence for memory reactivation in human REM sleep after TMR that is directly related to brain activity during wakeful task performance.


Sleep is crucial for rest and recovery, but it also allows the brain to process things it has learned while awake. This is why a person may go to bed frustrated with learning a tune on the piano but wake up the next morning ready to play it without fumbling. For this to happen, it is thought that memories must be reactivated during sleep ­ something which can be studied by monitoring brain activity. While it has been shown that memory reactivation occurs in some stages of human sleep, it was unclear whether it occurred in a specific stage known as REM sleep ­ which is important for learning. To study memory reactivation during REM sleep, Abdellahi et al. recruited volunteers and monitored their brain activity during an 'adaptation night' when certain sounds played as they slept. The following day, memories ­ such as an image or pressing a certain button ­ were paired with the sounds, which were replayed during REM sleep the following night to trigger memory reactivation (experimental night). Abdellahi et al. measured how strongly brain activity during each night related to the waking activity when the sound pairing tasks were imagined and compared the adaptation and experimental nights. The experimental night showed clear signs of memory reactivation after the sounds were played during REM sleep, suggesting that the sounds triggered memories of the associated images or buttons. These findings show that in humans, brain activity patterns that indicate memory reactivation can be identified during REM sleep. The work paves the way for future studies into the characteristics of this memory reactivation and how to trigger it in a way that leads to improvements in memory.


Subject(s)
Sleep, REM , Sleep , Humans , Sleep, REM/physiology , Sleep/physiology , Wakefulness , Sound
6.
J Neurosci ; 43(21): 3838-3848, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36977584

ABSTRACT

Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown. Here, we aimed to determine whether triggering reactivation in sleep could facilitate this process. We paired abstraction problems with sounds, then replayed these during either slow-wave sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation in 27 human participants (19 female). This revealed performance improvements on abstraction problems that were cued in REM, but not problems cued in SWS. Interestingly, the cue-related improvement was not significant until a follow-up retest 1 week after the manipulation, suggesting that REM may initiate a sequence of plasticity events that requires more time to be implemented. Furthermore, memory-linked trigger sounds evoked distinct neural responses in REM, but not SWS. Overall, our findings suggest that targeted memory reactivation in REM can facilitate visual rule abstraction, although this effect takes time to unfold.SIGNIFICANCE STATEMENT The ability to abstract rules from a corpus of experiences is a building block of human reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we can manipulate this process actively and which stage of sleep is most important. Targeted memory reactivation (TMR) is a technique that uses re-exposure to learning-related sensory cues during sleep to enhance memory consolidation. Here, we show that TMR, when applied during REM sleep, can facilitate the complex recombining of information needed for rule abstraction. Furthermore, we show that this qualitative REM-related benefit emerges over the course of a week after learning, suggesting that memory integration may require a slower form of plasticity.


Subject(s)
Cues , Memory Consolidation , Humans , Female , Sleep, REM/physiology , Learning/physiology , Sleep/physiology , Memory Consolidation/physiology
7.
Sleep ; 46(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36521010

ABSTRACT

Ambient light can influence sleep structure and timing. We explored how wearing an eye mask to block light during overnight sleep impacts memory and alertness, changes that could benefit everyday tasks like studying or driving. In Experiment 1, ninety-four 18-35-year-olds wore an eye mask while they slept every night for a week and underwent a control condition in which light was not blocked for another week. Five habituation nights were followed by a cognitive battery on the sixth and seventh days. This revealed superior episodic encoding and an improvement on alertness when using the mask. In Experiment 2, thirty-five 18-35-year-olds used a wearable device to monitor sleep with and without the mask. This replicated the encoding benefit and showed that it was predicted by time spent in slow-wave sleep. Our findings suggest that wearing an eye mask during overnight sleep can improve episodic encoding and alertness the next day.


Subject(s)
Attention , Sleep , Learning
8.
Neuroimage ; 266: 119820, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36535324

ABSTRACT

Targeted memory reactivation (TMR) is a technique in which sensory cues associated with memories during wake are used to trigger memory reactivation during subsequent sleep. The characteristics of such cued reactivation, and the optimal placement of TMR cues, remain to be determined. We built an EEG classification pipeline that discriminated reactivation of right- and left-handed movements and found that cues which fall on the up-going transition of the slow oscillation (SO) are more likely to elicit a classifiable reactivation. We also used a novel machine learning pipeline to predict the likelihood of eliciting a classifiable reactivation after each TMR cue using the presence of spindles and features of SOs. Finally, we found that reactivations occurred either immediately after the cue or one second later. These findings greatly extend our understanding of memory reactivation and pave the way for development of wearable technologies to efficiently enhance memory through cueing in sleep.


Subject(s)
Cues , Memory Consolidation , Humans , Memory/physiology , Sleep/physiology , Memory Consolidation/physiology , Machine Learning
9.
Brain Sci ; 12(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36291222

ABSTRACT

There is a close bidirectional relationship between sleep and epilepsy. Anti-seizure medications (ASM) act to reduce seizure frequency but can also impact sleep; this remains a relatively unexplored field given the importance of sleep on seizure occurrence, memory consolidation, and quality of life. We compared the effect of poly-ASM treatment on a night of sleep compared to an unmedicated night in patients with drug-resistant epilepsy, where ASMs were withdrawn and later restored as part of their pre-surgical evaluation. Within-subject analysis between medicated and unmedicated nights showed ASMs increased spindle (11-16 Hz) power and decreased slow wave (0.1-2 Hz) amplitude. Spindles became less strongly coupled to slow waves in the ASM night compared to no-ASM night, with effects to both the phase and strength of coupling and correlated with slow wave reduction. These effects were not seen in age-matched controls from the same unit where ASMs were not changed between two nights. Overall, we found that ASM polytherapy not only changed specific sleep waveforms, but also the fine interplay of spindle/slow wave coupling. Since these sleep oscillations impact both seizure occurrence and memory consolidation, our findings provide evidence towards a decoupling impact of ASMs on sleep that should be considered in future studies of sleep and memory disruption in people with epilepsy.

10.
J Neurosci ; 42(30): 5916-5929, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35710624

ABSTRACT

Schemata enhance memory formation for related novel information. This is true even when this information is neutral with respect to schema-driven expectations. This assimilation of novel information into schemata has been attributed to more effective organizational processing that leads to more referential connections with the activated associative schema network. Animal data suggest that systems consolidation of novel assimilated information is also accelerated. In the current study, we used both multivariate and univariate fMRI analyses to provide further support for these proposals and to elucidate the neural underpinning of these processes. Twenty-eight participants (5 male) overlearned fictitious schemata for 7 weeks and then encoded novel related and control facts in the scanner. These facts were retrieved both immediately and 2 weeks later, also in the scanner. Our results conceptually replicate previous findings with respect to enhanced vmPFC-hippocampus coupling during encoding of novel related information and point to a prior knowledge effect that is distinct from situations where novel information is experienced as congruent or incongruent with a schema. Moreover, the combination of both multivariate and univariate results further specified the proposed contributions of the vmPFC, precuneus and angular gyrus network to the more efficient encoding of schema-related information. In addition, our data provide further evidence for more efficient systems consolidation of such novel schema-related and potentially assimilated information.SIGNIFICANCE STATEMENT Our prior knowledge in a certain domain, often termed schema, heavily influences whether and how we form memories for novel information that can be related to them. The results of the current study show how a ventromedial prefrontal-precuneal-angular network contributes to the more efficient encoding of novel related information. Furthermore, the observed increase in prefrontal-hippocampal coupling during this process points to a critical distinction from the previously described mechanisms supporting the encoding of information that is experienced as congruent with schema-driven expectations. In addition, we find further support for the proposal based on animal data that prior knowledge enhances also the consolidation of schema-related information.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Humans , Knowledge , Magnetic Resonance Imaging/methods , Male
11.
J Sleep Res ; 31(6): e13676, 2022 12.
Article in English | MEDLINE | ID: mdl-35762085

ABSTRACT

Recent studies have shown that slow oscillations (SOs) can be driven by rhythmic auditory stimulation, which deepens slow-wave sleep (SWS) and improves memory and the immune-supportive hormonal milieu related to this sleep stage. While different attempts have been made to optimise the driving of the SOs by changing the number of click stimulations, no study has yet investigated the impact of applying more than five clicks in a row. Likewise, the importance of the type of sounds in eliciting brain responses is presently unclear. In a study of 12 healthy young participants (10 females; aged 18-26 years), we applied an established closed-loop stimulation method, which delivered sequences of 10 pink noises, 10 pure sounds (B note of 247 Hz), 10 pronounced "a" vowels, 10 sham, 10 variable sounds, and 10 "oddball" sounds on the up phase of the endogenous SOs. By analysing area under the curve, amplitude, and event related potentials, we explored whether the nature of the sound had a differential effect on driving SOs. We showed that every stimulus in a 10-click sequence, induces a SO response. Interestingly, all three types of sounds that we tested triggered SOs. However, pink noise elicited a more pronounced response compared to the other sounds, which was explained by a broader topographical recruitment of brain areas. Our data further suggest that varying the sounds may partially counteract habituation.


Subject(s)
Electroencephalography , Sleep, Slow-Wave , Female , Humans , Acoustic Stimulation/methods , Sleep/physiology , Sleep, Slow-Wave/physiology , Sound
12.
Neuroimage ; 253: 119055, 2022 06.
Article in English | MEDLINE | ID: mdl-35276365

ABSTRACT

Large slow oscillations (SO, 0.5-2 Hz) characterise slow-wave sleep and are crucial to memory consolidation and other physiological functions. Manipulating slow oscillations may enhance sleep and memory, as well as benefitting the immune system. Closed-loop auditory stimulation (CLAS) has been demonstrated to increase the SO amplitude and to boost fast sleep spindle activity (11-16 Hz). Nevertheless, not all such stimuli are effective in evoking SOs, even when they are precisely phase locked. Here, we studied what factors of the ongoing activity patterns may help to determine what oscillations to stimulate to effectively enhance SOs or SO-locked spindle activity. Hence, we trained classifiers using the morphological characteristics of the ongoing SO, as measured by electroencephalography (EEG), to predict whether stimulation would lead to a benefit in terms of the resulting SO and spindle amplitude. Separate classifiers were trained using trials from spontaneous control and stimulated datasets, and we evaluated their performance by applying them to held-out data both within and across conditions. We were able to predict both when large SOs occurred spontaneously, and whether a phase-locked auditory click effectively enlarged them with good accuracy for predicting the SO trough (∼70%) and SO peak values (∼80%). Also, we were able to predict when stimulation would elicit spindle activity with an accuracy of ∼60%. Finally, we evaluate the importance of the various SO features used to make these predictions. Our results offer new insight into SO and spindle dynamics and may suggest techniques for developing future methods for online optimization of stimulation.


Subject(s)
Memory Consolidation , Sleep, Slow-Wave , Acoustic Stimulation , Electroencephalography , Humans , Memory Consolidation/physiology , Sleep/physiology , Sleep, Slow-Wave/physiology
13.
Neuroimage ; 253: 119120, 2022 06.
Article in English | MEDLINE | ID: mdl-35331867

ABSTRACT

Emotional memories are preferentially consolidated during sleep, through the process of memory reactivation. Targeted memory reactivation (TMR) has been shown to boost memory consolidation during sleep, but its neural correlates remain unclear, particularly for emotional memories. Here, we aimed to examine how TMR of emotional material during slow wave sleep (SWS) impacts upon neural processing during a subsequent arousal rating task. Participants were trained on a spatial memory task including negative and neutral pictures paired with semantically matching sounds. The picture-sound pairs were rated for emotional arousal before and after the spatial memory task. Then, half of the sounds from each emotional category (negative and neutral) were cued during SWS. The next day, participants were retested on both the arousal rating and the spatial memory task inside an MRI scanner, followed by another retest session a week later. Memory consolidation and arousal processing did not differ between cued and non-cued items of either emotional category. We found increased responses to emotional stimuli in the amygdala and orbitofrontal cortex (OFC), and a cueing versus emotion interaction in the OFC, whereby cueing neutral stimuli led to an increase in OFC activity, while cueing negative stimuli led to decreased OFC activation. Interestingly, the effect of cueing on amygdala activation was modulated by time spent in REM sleep. We conclude that SWS TMR impacts OFC activity, while REM sleep plays a role in mediating the effect of such cueing on amygdala.


Subject(s)
Memory Consolidation , Sleep, Slow-Wave , Amygdala/diagnostic imaging , Emotions/physiology , Humans , Memory/physiology , Memory Consolidation/physiology , Prefrontal Cortex , Sleep/physiology , Sleep, Slow-Wave/physiology
14.
Neuroimage ; 244: 118573, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34537384

ABSTRACT

Targeted memory reactivation (TMR) has recently emerged as a promising tool to manipulate and study the sleeping brain. Although the technique is developing rapidly, only a few studies have examined how the effects of TMR develop over time. Here, we use a bimanual serial reaction time task (SRTT) to investigate whether the difference between the cued and un-cued sequence of button presses persists long-term. We further explore the relationship between the TMR benefit and sleep spindles, as well as their coupling with slow oscillations. Our behavioural analysis shows better performance for the dominant hand. Importantly, there was a strong effect of TMR, with improved performance on the cued sequence after sleep. Closer examination revealed a significant benefit of TMR at 10 days post-encoding, but not 24 h or 6 weeks post-encoding. Time spent in stage 2, but not stage 3, of NREM sleep predicted cueing benefit. We also found a significant increase in spindle density and SO-spindle coupling during the cue period, when compared to the no-cue period. Together, our results demonstrate that TMR effects evolve over several weeks post-cueing, as well as emphasising the importance of stage 2, spindles and the SO-spindle coupling in procedural memory consolidation.


Subject(s)
Cues , Memory Consolidation/physiology , Sleep Stages/physiology , Adolescent , Electroencephalography , Female , Humans , Male , Reaction Time , Sleep , Young Adult
16.
Commun Biol ; 4(1): 404, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767319

ABSTRACT

A growing body of evidence suggests that sleep can help to decouple the memory of emotional experiences from their associated affective charge. This process is thought to rely on the spontaneous reactivation of emotional memories during sleep, though it is still unclear which sleep stage is optimal for such reactivation. We examined this question by explicitly manipulating memory reactivation in both rapid-eye movement sleep (REM) and slow-wave sleep (SWS) using targeted memory reactivation (TMR) and testing the impact of this manipulation on habituation of subjective arousal responses across a night. Our results show that TMR during REM, but not SWS significantly decreased subjective arousal, and this effect is driven by the more negative stimuli. These results support one aspect of the sleep to forget, sleep to remember (SFSR) hypothesis which proposes that emotional memory reactivation during REM sleep underlies sleep-dependent habituation.


Subject(s)
Arousal/physiology , Mental Recall/physiology , Sleep, REM/physiology , Sleep, Slow-Wave/physiology , Adult , Emotions , Female , Humans , Memory , Young Adult
17.
18.
Sleep ; 43(12)2020 12 14.
Article in English | MEDLINE | ID: mdl-32562487

ABSTRACT

STUDY OBJECTIVES: Cortical slow oscillations (SOs) and thalamocortical sleep spindles hallmark slow wave sleep and facilitate memory consolidation, both of which are reduced with age. Experiments utilizing auditory closed-loop stimulation to enhance these oscillations showed great potential in young and older subjects. However, the magnitude of responses has yet to be compared between these age groups. We examined the possibility of enhancing SOs and performance on different memory tasks in a healthy middle-aged population using this stimulation and contrast effects to younger adults. METHODS: In a within-subject design, 17 subjects (55.7 ± 1.0 years) received auditory stimulation in synchrony with SO up-states, which was compared to a no-stimulation sham condition. Overnight memory consolidation was assessed for declarative word-pairs and procedural finger-tapping skill. Post-sleep encoding capabilities were tested with a picture recognition task. Electrophysiological effects of stimulation were compared to a previous younger cohort (n = 11, 24.2 ± 0.9 years). RESULTS: Overnight retention and post-sleep encoding performance of the older cohort revealed no beneficial effect of stimulation, which contrasts with the enhancing effect the same stimulation protocol had in our younger cohort. Auditory stimulation prolonged endogenous SO trains and induced sleep spindles phase-locked to SO up-states in the older population. However, responses were markedly reduced compared to younger subjects. Additionally, the temporal dynamics of stimulation effects on SOs and spindles differed between age groups. CONCLUSIONS: Our findings suggest that the susceptibility to auditory stimulation during sleep drastically changes with age and reveal the difficulties of translating a functional protocol from younger to older populations.


Subject(s)
Memory Consolidation , Sleep, Slow-Wave , Acoustic Stimulation , Adult , Electroencephalography , Humans , Middle Aged , Sleep
19.
Sleep ; 43(6)2020 06 15.
Article in English | MEDLINE | ID: mdl-31872860

ABSTRACT

STUDY OBJECTIVES: Closed-loop auditory stimulation (CLAS) is a method for enhancing slow oscillations (SOs) through the presentation of auditory clicks during sleep. CLAS boosts SOs amplitude and sleep spindle power, but the optimal timing for click delivery remains unclear. Here, we determine the optimal time to present auditory clicks to maximize the enhancement of SO amplitude and spindle likelihood. METHODS: We examined the main factors predicting SO amplitude and sleep spindles in a dataset of 21 young and 17 older subjects. The participants received CLAS during slow-wave-sleep in two experimental conditions: sham and auditory stimulation. Post-stimulus SOs and spindles were evaluated according to the click phase on the SOs and compared between and within conditions. RESULTS: We revealed that auditory clicks applied anywhere on the positive portion of the SO increased SO amplitudes and spindle likelihood, although the interval of opportunity was shorter in the older group. For both groups, analyses showed that the optimal timing for click delivery is close to the SO peak phase. Click phase on the SO wave was the main factor determining the impact of auditory stimulation on spindle likelihood for young subjects, whereas for older participants, the temporal lag since the last spindle was a better predictor of spindle likelihood. CONCLUSIONS: Our data suggest that CLAS can more effectively boost SOs during specific phase windows, and these differ between young and older participants. It is possible that this is due to the fluctuation of sensory inputs modulated by the thalamocortical networks during the SO.


Subject(s)
Sleep, Slow-Wave , Acoustic Stimulation , Aged , Electroencephalography , Humans , Sleep , Young Adult
20.
Curr Biol ; 29(18): R906-R912, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31550479

ABSTRACT

Over the last ten years, scientists have developed a method called targeted memory reactivation (TMR) for selectively strengthening memories during sleep. Prior to this, memory manipulation during sleep was at most a plot device in science fiction movies, but a large corpus of studies now demonstrates that TMR is both reliable and effective. TMR studies hypothesize that this method taps into normal consolidation mechanisms that require the repeated replay of memories during sleep. This idea has recently been supported by several new studies demonstrating that TMR upregulates the reactivation of cued memories, and that such upregulation predicts subsequent memory performance. This new body of work provides a unique window onto many properties of memory reactivation and helps to close the gap between our understanding of replay in rodents, where it has been visualised at the neural level for many years, and humans, where such studies are only just starting to become possible. We will discuss this new literature and highlight the vast potential of these new methods for future research.


Subject(s)
Memory Consolidation/physiology , Mental Recall/physiology , Sleep/physiology , Acoustic Stimulation , Animals , Cues , Electroencephalography , Humans , Learning/physiology , Memory/physiology , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...