Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 12(8): 4440-4454, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35465244

ABSTRACT

Sol immobilization is used to produce bimetallic catalysts with higher activity to monometallic counterparts for a wide range of environmental and commercial catalytic transformations. Analysis of complementary surface characterization (XPS, Boehm's titration, and zeta potential measurements) was used to elucidate alterations in the surface functionality of two activated carbon supports during acid exposure. When considered in parallel to the experimentally determined electrostatic and conformational changes of the polymer surrounding the nanoparticles, an electrostatic model is proposed describing polymer protected nanoparticle deposition with several polymer-carbon support examples described. Consideration of the electrostatic interactions ensures full deposition of the polymer protected nanoparticles and at the same time influences the structure of the bimetallic nanoparticle immobilized on the support. The normalized activity of AuPd catalysts prepared with 133 ppm H2SO4 has a much higher activity for the direct synthesis of hydrogen peroxide compared to catalysts prepared in the absence of acid. Detailed characterization by XPS indicates that the surface becomes enriched in Au in the Au-Pd samples prepared with acid, suggesting an improved dispersion of smaller bimetallic nanoparticles, rich in Au, that are known to be highly active for the direct synthesis reaction. Subsequent microscopy measurements confirmed this hypothesis, with the acid addition catalysts having a mean particle size ∼2 nm smaller than the zero acid counterparts. The addition of acid did not result in a morphology change, and random alloyed bimetallic AuPd nanoparticles were observed in catalysts prepared by sol immobilization in the presence and absence of acid. This work shows that the deposition of polymer protected AuPd nanoparticles onto activated carbon is heavily influenced by the acid addition step in the sol immobilization process. The physicochemical properties of both the polymer and the activated carbon support should be considered when designing a bimetallic nanoparticle catalyst by sol immobilization to ensure the optimum performance of the final catalyst.

2.
Mar Drugs ; 17(1)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669642

ABSTRACT

The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, µ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.


Subject(s)
Conotoxins/metabolism , Conus Snail/physiology , Amino Acid Sequence , Animals , Computational Biology , Conotoxins/genetics , Feeding Behavior/physiology , Gene Expression Profiling/methods , Mass Spectrometry/methods , Predatory Behavior/physiology , Proteomics/methods , Sequence Analysis, DNA
3.
Mol Biosyst ; 13(12): 2453-2465, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29090697

ABSTRACT

Cone snails are predatory gastropods whose neurotoxic venom peptides (conotoxins) have been extensively studied for pharmacological probes, venom evolution mechanisms and potential therapeutics. Conotoxins have a wide range of structural and functional classes that continue to undergo accelerated evolution that underlies the rapid expansion of the genus over their short evolutionary history. A number of pharmacological classes, driven by separately evolved defensive and predatory venoms, have been hypothesised to facilitate shifts in prey that exemplify the adaptability of cone snails. Here we provide an overview of these pharmacological families and discuss their ecological roles and evolutionary impact.


Subject(s)
Peptides/chemistry , Snails/chemistry , Venoms/chemistry , Amino Acid Sequence , Animals , Conotoxins/chemistry , Evolution, Molecular , Phylogeny , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...