Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
2.
Ultrasound Med Biol ; 44(12): 2710-2727, 2018 12.
Article in English | MEDLINE | ID: mdl-30268531

ABSTRACT

The lytic recombinant tissue plasminogen activator (rt-PA) is the only drug approved by the Food and Drug Administration for treating ischemic stroke. Less than 40% of patients with large vessel occlusions who are treated with rt-PA have improved blood flow. However, up to 6% of all patients receiving rt-PA develop intracerebral hemorrhage. Predicting the efficacy of rt-PA treatment a priori could help guide therapeutic decision making, such that rt-PA is administered only to those individuals who would benefit from this treatment. Clot composition and structure affect the lytic efficacy of rt-PA and have an impact on elasticity. However, the relationship between clot elasticity and rt-PA lytic susceptibility has not been adequately investigated. The goal of this study was to quantify the relationship between clot elasticity and rt-PA susceptibility in vitro. Human and porcine highly retracted and mildly retracted clots were fabricated in glass pipettes. The rt-PA lytic susceptibility was evaluated in vitro using the percent clot mass loss. The Young's moduli of the clots were estimated using ultrasound-based single-track-location shear wave elasticity imaging. The percent mass loss in mildly retracted porcine and human clots (28.9 ± 6.1% and 45.2 ± 7.1%, respectively) was significantly higher (p < 0.05) than in highly retracted porcine and human clots (10.9 ± 2.1% and 25.5 ± 10.0%, respectively). Furthermore, the Young's moduli of highly retracted porcine and human clots (5.33 ± 0.92 and 3.21 ± 1.97 kPa, respectively) were significantly higher (p < 0.05) than those of mildly retracted porcine and human clots (2.66 ± 0.55 and 0.79 ± 0.21 kPa, respectively). The results revealed an inverse relationship between the percent clot mass loss and Young's modulus. These findings motivate continued investigation of ultrasound-based methods to assess clot stiffness in order to predict rt-PA thrombolytic efficacy.


Subject(s)
Elasticity Imaging Techniques/methods , Thrombosis/drug therapy , Tissue Plasminogen Activator/pharmacology , Animals , Humans , In Vitro Techniques , Models, Animal , Phantoms, Imaging , Reference Values , Swine
SELECTION OF CITATIONS
SEARCH DETAIL