Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(28): 5668-5675, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38968412

ABSTRACT

Kinetics of the lanthanide cations (Ln+ = La+-Lu+ excluding Pm+) reacting with molecular oxygen were measured in a selected-ion flow tube apparatus from 300 to 600 K. Where exothermic, these reactions occur efficiently, producing LnO+ + O. The reactions display positive temperature dependences consistent with Arrhenius equation behavior and show small activation energies (0-2 kJ mol-1) that are strongly correlated to promotion energies of the Ln+ atoms. Reanalysis of literature data on neutral Ln + O2 reactions show a similar correlation with slightly larger activation energies (0-10 kJ mol-1). The data are explained by a common mechanism controlling oxidation by molecular oxygen in these systems, as well as in gas-phase reactions of transition metal and posttransition metal cluster anions, neutral clusters deposited on surfaces, and for oxygen incident on metal surfaces. It is posited that across these systems, the height of an early barrier along the reaction coordinate is predictable based on knowledge of the electronic states of the reactants and may be used to either promote or inhibit oxygen activation.

2.
Phys Chem Chem Phys ; 26(11): 8670-8680, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437035

ABSTRACT

The reactions of Ta+ and Nb+ with CO2 proceed only by a highly efficient oxygen atom transfer reaction to the respective oxide at room temperature in the gas phase. Although the product spin states are not determined, thermochemistry dictates that they must be different from ground state quintet Ta+ and Nb+, implying that intersystem crossing (ISC) has occurred. Recent reactive scattering experiments found dominant indirect dynamics for the reaction with Ta+ hinting at a bottleneck along the reaction path. The question on the nature of the bottleneck, whether it involves a crossing point or a transition state, could not be finally answered because theory located both close to each other. Here, we aim at shedding further light onto the impact of intersystem crossing on the reaction dynamics and ultimately the reactivity of transition metal ion reactions in the gas phase. We employ a combination of thermal kinetics for Ta+ and Nb+ with CO2 using a selected-ion flow tube (SIFT) apparatus and differential scattering cross sections for Nb+ + CO2 from crossed-beam velocity map imaging. The reaction with niobium again shows dominant indirect dynamics and in general very similar dynamics compared to Ta+ + CO2. At thermal energies, both reactions show sub-collisional rate constants with small negative temperature dependencies. Experiments are complemented by high level quantum chemical calculations of the minimum energy pathway. Statistical modelling well-reproduces the experimental thermal rate constants, and suggests that the Nb+ reaction is rate-limited by the intersystem crossing at thermal energies.

3.
J Phys Chem A ; 128(2): 439-448, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38175962

ABSTRACT

Rate constants and product branching fractions were measured from 300-600 K for Fen- + O2 (n = 2-17) and for 300-500 K for FexNiy- + O2 (x + y = 3-9) using a selected-ion flow tube (SIFT) apparatus. Rate constants for 46 species are reported. All rate constants increased with increasing temperature, and several were in excess of the Langevin-Gioumousis-Stevenson (LGS) capture rate at elevated temperatures. As with previously studied transition metal anion oxidation reactions, the collision limit is treated as the sum of the LGS limit along with a hard-sphere contribution, allowing for determination of activation energies. These values are compared to each other along with previous results for Nin-. Measured rate constants for all three series (Fen-, Nin-, and FexNy-) vary over a relatively narrow range (1-5 × 10-10 cm3 s-1 at 300 K) being at least 15% of the collision rate constant. All reaction rate constants increase with temperature, described by small activation energies of 0.5-4 kJ mol-1. The data are consistent with an anticorrelation between the electron binding energy and rate constant, previously noted in other systems. The Fen- reaction produces a larger population of higher energy electrons than do the Nin- reactions, with FexNiy- producing an intermediate amount. The results suggest that the overall rate constant is limited by a small energetic barrier located at a large internuclear distance where electrostatic forces dominate, causing the potentials to be similar across systems, while the product formation is determined by the shorter-range, valence portion of the potential, which varies widely between systems.

4.
Phys Chem Chem Phys ; 25(35): 23477-23490, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37646145

ABSTRACT

The electronic structure of a transition metal atom allows it to act as a catalytic active site by providing lower energy alternative pathways in chemical transformations. We have identified and kinetically characterized three such pathways in the title reaction. One is an adiabatic pathway that occurs on a single potential energy surface described within the Born-Oppenheimer approximation. A second pathway opens microseconds into the reaction as a portion of the reacting population competitively transitions from triplet to singlet multiplicity to circumvent energetic barriers on the triplet surface. These pathways are single- and two-state reactive (SSR and TSR) where the Co+ cation mediates an oxidative addition/reductive elimination sequence of the CH3CHO molecule. The third observed reaction pathway is the aldehyde hydrogen tunneling through an Eyring barrier to form high-spin products. First-order rate constants for the adiabatic and nonadiabatic energy lowered pathways, and the hydrogen tunneling pathway, are each measured using the single photon initiated dissociative rearrangement reaction (SPIDRR) experimental technique. We believe that this is the first experimental study where such disparate dynamic features (SSR, TSR, and H-tunneling) are disentangled in a system's chemistry, attributing specific rate constant values to each effect and quantifying the various competitions. Moreover, multi-reference CASSCF/CASPT2 calculations indicate that structures with covalent Co-H bonds are present exclusively along the excited singlet surface. This phenomenon significantly reduces these structures' energy relative to their triplet counterparts, thus enabling the surface crossing and spin inversion that cause the observed two-state reactivity.

5.
J Phys Chem A ; 127(34): 7221-7227, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37584597

ABSTRACT

Rate constants and product branching fractions were measured for reactions of Ar+, O2+, and NO+ with isoprene (2-methyl-1,3-butadiene C5H8) as a function of temperature. The rate constants are large (∼2 × 10-9 cm3 s-1) and increase with temperature, exceeding the ion-dipole/induced dipole capture rate. Adding a hard sphere term to the collision rate provides a more useful upper limit and predicts the positive temperature dependences. Previous kinetic energy-dependent rate constants show a similar trend. NO+ reacts only by non-dissociative charge transfer. The more energetic O2+ reaction has products formed through both non-dissociative and dissociative charge transfer, or possibly through an H atom transfer. The very energetic Ar+ has essentially only dissociative products; assumption of statistical behavior in the dissociation reasonably reproduces the product branching fractions.

6.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37486057

ABSTRACT

The rate constant for electron attachment to Mo(CO)6 was determined to be ka = 2.4 ± 0.6 × 10-7 cm3 s-1 at 297 K in a flowing-afterglow Langmuir-probe experiment. The sole anion product is Mo(CO)5-. A small decline in ka was observed up to 450 K, and decomposition was apparent at higher temperatures. The charge transfer reaction of Ar+ with Mo(CO)6 is exothermic by 7.59 ± 0.03 eV, which appears to be sufficient to remove the first 5 ligands from Mo(CO)6+.

7.
Phys Chem Chem Phys ; 24(4): 2300-2308, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35015007

ABSTRACT

For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.

SELECTION OF CITATIONS
SEARCH DETAIL
...