Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appetite ; 198: 107355, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38621593

ABSTRACT

Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead to increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean male and female mice, and with multiple reinforcer types.


Subject(s)
Cues , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Male , Female , Obesity/etiology , Obesity/psychology , Mice , Reinforcement, Psychology , Mice, Obese , Hyperphagia/psychology , Feeding Behavior/psychology , Sucrose/administration & dosage , Thinness/psychology
2.
bioRxiv ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38260511

ABSTRACT

Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean males and female mice, and with multiple reinforcer types.

3.
Elife ; 112022 09 23.
Article in English | MEDLINE | ID: mdl-36149059

ABSTRACT

Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.


To many of us, it may seem obvious that sleep is restorative: we feel better after a good night's rest. However, exactly how sleep benefits the brain and body remains poorly understood. One clue may lie in neuropsychiatric disorders: these conditions ­ such as depression and anxiety ­ are often accompanied by disrupted sleep. Additionally, these neuropsychiatric disorders are frequently caused or worsened by stress, which can also interfere with sleep. This close association between stress and sleep has led some to hypothesize that sleep serves to overcome the adverse effects of stress on the brain, but this hypothesis remains largely untested. One type of stress that is common to all mammals is social stress, defined as stress caused by social interactions. This means that mice and other rodents can be subjected to social stress in the laboratory to test hypotheses about the effects of stress on the brain. Importantly, in both animals and humans, there are individual differences in resilience, or the ability to overcome the adverse effects of stress. Based on this information, Bush et al. set out to establish whether sleep can regulate resilience to social stress in mice. When the mice were gently kept awake during their normal sleep time, resilience decreased and so the mice were less able to overcome the negative effects of stress. Conversely, increasing sleep, by activating an area of the brain responsible for initiating sleep, increased the mice's resilience to social stress. Thus, Bush et al. showed that changes in sleep do lead to changes in resilience. To find out whether resilience can be predicted by changes in sleeping patterns, Bush et al. studied how both resilient mice and those susceptible to stress slept before and after social stress. Resilient mice would often sleep more after social stress; meanwhile, few changes were observed in susceptible mice. Surprisingly, sleep quality also predicted resilience, with resilient mice sleeping better than susceptible mice even before exposure to social stress. To determine whether the differences in sleep that predict resilience can be detected as brain activity, Bush et al. placed electrodes in two regions of the prefrontal cortex ­ a part of the brain important for decision-making and social behaviors ­ to measure how mice recovered lost sleep. This experiment revealed that the changes in sleep that predict resilience are prominent in the prefrontal cortex. Overall, Bush et al. reveal that sleeping more and sleeping better promote resilience to social stress. Furthermore, the results suggests that lack of sleep may lead to increased risk of stress-related psychiatric conditions. Humans are one of the few species that choose to deprive themselves of sleep: Bush, et al. provide evidence that this choice may have significant consequences on mental health. Furthermore, this work creates a new model that lays the groundwork for future studies investigating how sleep can overcome stress on the brain.


Subject(s)
Eye Movements , Stress, Psychological , Animals , Mice , Male , Mice, Inbred C57BL , Stress, Psychological/psychology , Prefrontal Cortex , Sleep , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...