Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Deliv ; 15(2): 119-134, 2024 02.
Article in English | MEDLINE | ID: mdl-38180012

ABSTRACT

Aim: The novel hydrogel systems made from sodium alginate, pectin, beta-cyclodextrin and deoxycholic acid (DCA) were proposed as potential drug-delivery matrices. Materials & methods: To ensure biocompatibility, rheological parameters were examined and hydrogels' effects on bioenergetic parameters and cellular viability on murine hepatic, and muscle and pancreatic beta cells. Results & conclusion: All hydrogels show non-Newtonian, shear thinning behavior. Cells displayed various oxygen-dependent viability patterns, with the bile acid overall adversely affecting their biological activities. All cells performed best under normoxia, with pancreatic beta cells displaying the most profound oxygen-dependent viability behavior. The cells tolerated the addition of a moderate concentration of beta-cyclodextrin to the polymer matrix.


Subject(s)
Cyclodextrins , beta-Cyclodextrins , Mice , Animals , Bile Acids and Salts , Hydrogels , Oxygen
2.
Nanomedicine (Lond) ; 18(12): 923-940, 2023 05.
Article in English | MEDLINE | ID: mdl-37529927

ABSTRACT

Background: Sensorineural hearing loss has been associated with oxidative stress. However, an antioxidant that passes effectively through the ear remains elusive. Method: Probucol (PB)-based nanoparticles were formed using a spray-drying encapsulation technique, characterized and tested in vitro. Results: Uniform, spherical nanoparticles were produced. The addition of lithocholic acid to PB formulations did not affect drug content or production yield, but it did modify capsule size, surface tension, electrokinetic stability and drug release. Cell viability, bioenergetics and inflammatory profiles were improved when auditory cells were exposed to PB-based nanoparticles, which showed antioxidant properties (p < 0.05). Conclusion: PB-based nanoparticles can potentially protect the auditory cell line from oxidative stress and could be used in future in vivo studies as a potential new therapeutic agent for sensorineural hearing loss.


Oxidative stress is an imbalance of cellular processes in which the production of free radicals outweighs the cellular defense mechanism. The association of oxidative stress with the pathophysiology of sensorineural hearing loss (SHL) is well established. SHL development is associated with chronic damage in the structure of the inner ear or auditory nerve. Therefore, potent antioxidants such as probucol could be one way to prevent or treat SHL. However, due to its isolated position, SHL is challenging to treat, imposing a desperate need for refining existing therapeutic methods; one way to do this is by optimizing the formulation using nanoparticles. We aimed to design a novel, stable formulation of PB using polymers and excipients to develop nanoparticles and examine the efficiency of these formulations on the HEI-OC1 stress cell line. We found that the prepared nanoparticle is robust and stable and protects HEI-OC1 from cellular toxicity and oxidative stress. It could be a novel therapeutic agent to treat or prevent SHL.


Subject(s)
Hearing Loss, Sensorineural , Nanoparticles , Humans , Probucol/pharmacology , Antioxidants/pharmacology , Bile Acids and Salts/pharmacology , Oxidative Stress , Hearing Loss, Sensorineural/drug therapy , Hearing Loss, Sensorineural/prevention & control , Hearing , Pharmaceutical Preparations
3.
Ther Deliv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36803017

ABSTRACT

Hearing loss is a worldwide epidemic, with approximately 1.5 billion people currently struggling with hearing-related conditions. Currently, the most wildly used and effective treatments for hearing loss are primarily focus on the use of hearing aids and cochlear implants. However, these have many limitations, highlighting the importance of developing a pharmacological solution that may be used to overcome barriers associated with such devices. Due to the challenges of delivering therapeutic agents to the inner ear, bile acids are being explored as potential drug excipients and permeation enhancers. This review, therefore, aims to explore the pathophysiology of hearing loss, the challenges in treatment and the manners in which bile acids could potentially aid in overcoming these challenges.

4.
Small ; 19(8): e2204986, 2023 02.
Article in English | MEDLINE | ID: mdl-36538754

ABSTRACT

Hearing loss impacts a large proportion of the global population. Damage to the inner ear, in particular the sensitive hair cells, can impact individuals for the rest of their lives. There are very limited options for interventions after damage to these cells has occurred. Targeted gene delivery may provide an effective means to trigger appropriate differentiation of progenitor cells for effective replacement of these sensitive hair cells. There are several hurdles that need to be overcome to effectively deliver these genes. Nanoencapsulation technology has previously been used for the delivery of pharmaceuticals, proteins and nucleic acids, and may provide an effective means of delivering genes to trigger appropriate differentiation. This review investigates the background of hearing loss, current advancements and pitfalls of gene delivery, and how nanoencapsulation may be useful.


Subject(s)
Ear, Inner , Hearing Loss , Humans , Bile Acids and Salts , Ear, Inner/metabolism , Hearing Loss/genetics , Hearing Loss/metabolism , Hearing Loss/therapy , Gene Transfer Techniques , Genetic Therapy
5.
Colloids Surf B Biointerfaces ; 222: 113014, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427407

ABSTRACT

Deoxycholic acid (DCA) is a bile acid capable of forming micelles and modifying the properties of hydrogels. We incorporated DCA in sodium alginate (SA) and poloxamer 407 matrices creating novel DCA-copolymer hydrogel for therapeutic delivery. Hydrogels were assessed for common rheological properties. Biocompatibility and biological effect were examined on various cell lines. Cell viability was determent in normal and various hypoxic conditions, and full mitochondrial bioenergetic parameters were assessed in cell lines in order to illustrate hydrogel effects on survival, and cell metabolic profile within the hydrogels. Obtained data suggest that a low dose of DCA in permeable, biocompatible hydrogels can be beneficial for cells to combat hypoxic conditions.


Subject(s)
Hydrogels , Micelles , Hydrogels/pharmacology , Cell Line , Alginates/pharmacology , Poloxamer
6.
J Pharm Sci ; 112(3): 700-707, 2023 03.
Article in English | MEDLINE | ID: mdl-36150468

ABSTRACT

The biocompatibility and effects on cells' bioactivity of developed pharmaceuticals are crucial properties, required to permit their safe delivery. Nanogel matrices offer a promising role in emerging pharmaceutics; however, it is crucial that they and their excipients do not demonstrate detrimental effects on the cells to which they interact. This study investigated the use of Teflon and the secondary bile acid deoxycholic acid in the formation of novel nanogel matrices. Each has properties which may be of benefit for the nanogels created and their use in the pharmaceutical industry. Rheological parameters and scanning electron microscopy studies were conducted. In order to assess the developed nanogels' impacts on cellular bioactivity, studies using Seahorse assays were conducted on three cell types, hepatic, muscle and pancreatic beta cells. Results demonstrated the addition of Teflon did not alter the morphological characteristics of resulting nanogels or the metabolic profiles of the cell lines. Interestingly, pancreatic beta cells highlighted the potential of Teflon to exert a protective profile from mitochondrial damage. Overall, the developed nanogels showed potentially promising profiles in certain studies conducted which may lead to future research.


Subject(s)
Polyethylene Glycols , Polytetrafluoroethylene , Nanogels , Polyethyleneimine
7.
Gels ; 8(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35735702

ABSTRACT

The pathophysiology of a multitude of diseases is influenced by bioenergetic dysfunction. Healthy mitochondria are presented as essential for the regulation and function of multiple cell types, including the cells of relevance for this research: pancreatic beta cells, muscle cells, and liver cells. Hence, effects of hydrogels (particularly nanogels) on bioenergetics needs to be taken into account when designing optimum delivery matrices. Several polymers have been suggested for use in hydrogels and nanogels, with focus on chitosan due to its range of beneficial properties. Bile acids have emerged as beneficial excipients, including deoxycholic acid, which can increase membrane permeability of cells. Nanogels were manufactured containing various concentrations of chitosan and deoxycholic acid in addition to the staple sodium alginate. Nanogels then underwent an array of analysis including rheological studies and in vitro cell work assessing viability, hypoxia, and the bioenergetic profiles. Overall, deoxycholic acid showed enhanced gel strength although this resulted in slightly lower cell viability and impacted bioenergetic profiles. Results from this study showed the benefits of deoxycholic acid; however, this was found to be less suitable for cell delivery matrices and is perhaps more beneficial for drug-delivery systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...