Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34952892

ABSTRACT

Antibody secreting cells (ASCs) circulate after vaccination and infection and migrate to the BM where a subset known as long-lived plasma cells (LLPCs) persists and secrete antibodies for a lifetime. The mechanisms by which circulating ASCs become LLPCs are not well elucidated. Here, we show that human blood ASCs have distinct morphology, transcriptomes, and epigenetics compared with BM LLPCs. Compared with blood ASCs, BM LLPCs have decreased nucleus/cytoplasm ratio but increased endoplasmic reticulum and numbers of mitochondria. LLPCs up-regulate pro-survival genes MCL1, BCL2, and BCL-XL while simultaneously down-regulating pro-apoptotic genes HRK1, CASP3, and CASP8 Consistent with reduced gene expression, the pro-apoptotic gene loci are less accessible in LLPCs. Of the pro-survival genes, only BCL2 is concordant in gene up-regulation and loci accessibility. Using a novel in vitro human BM mimetic, we show that blood ASCs undergo similar morphological and molecular changes that resemble ex vivo BM LLPCs. Overall, our study demonstrates that early-minted blood ASCs in the BM microniche must undergo morphological, transcriptional, and epigenetic changes to mature into apoptotic-resistant LLPCs.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Genomic Imprinting , Plasma Cells/cytology , Plasma Cells/metabolism , Adolescent , Adult , Antibody Formation/genetics , Antibody Formation/immunology , Apoptosis/genetics , Biomarkers , Cell Survival , Female , Genetic Heterogeneity , Histocytochemistry , Humans , Immunophenotyping , Male , Middle Aged , Plasma Cells/immunology , Plasma Cells/ultrastructure , Time Factors , Young Adult
2.
Immunol Rev ; 303(1): 138-153, 2021 09.
Article in English | MEDLINE | ID: mdl-34337772

ABSTRACT

Antibody-secreting cells (ASC) are the effectors of protective humoral immunity and the only cell type that produces antibodies or immunoglobulins in mammals. In addition to their formidable capacity to secrete massive quantities of proteins, ASC are terminally differentiated and have unique features to become long-lived plasma cells (LLPC). Upon antigen encounter, B cells are activated through a complex multistep process to undergo fundamental morphological, subcellular, and molecular transformation to become an efficient protein factory with lifelong potential. The ASC survival potential is determined by factors at the time of induction, capacity to migration from induction to survival sites, and ability to mature in the specialized bone marrow microenvironments. In the past decade, considerable progress has been made in identifying factors regulating ASC longevity. Here, we review the intrinsic drivers, trafficking signals, and extrinsic regulators with particular focus on how they impact the survival potential to become a LLPC.


Subject(s)
Antibody-Producing Cells , Plasma Cells , Animals , B-Lymphocytes , Bone Marrow , Cell Survival , Immunity, Humoral
3.
Nat Immunol ; 21(12): 1506-1516, 2020 12.
Article in English | MEDLINE | ID: mdl-33028979

ABSTRACT

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Humans , Immunophenotyping
4.
medRxiv ; 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32511635

ABSTRACT

A wide clinical spectrum has become a hallmark of the SARS-CoV-2 (COVID-19) pandemic, although its immunologic underpinnings remain to be defined. We have performed deep characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation as previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody secreting cell expansion and early production of high levels of SARS-CoV-2-specific antibodies. Yet, these patients fared poorly with elevated inflammatory biomarkers, multi-organ failure, and death. Combined, the findings strongly indicate a major pathogenic role for immune activation in subsets of COVID-19 patients. Our study suggests that, as in autoimmunity, targeted immunomodulatory therapy may be beneficial in specific patient subpopulations that can be identified by careful immune profiling.

5.
Mol Pharmacol ; 96(2): 158-167, 2019 08.
Article in English | MEDLINE | ID: mdl-31175181

ABSTRACT

Mithramycin demonstrates preclinical anticancer activity, but its therapeutic dose is limited by the development of hepatotoxicity that remains poorly characterized. A pharmacogenomics characterization of mithramycin-induced transaminitis revealed that hepatotoxicity is associated with germline variants in genes involved in bile disposition: ABCB4 (multidrug resistance 3) rs2302387 and ABCB11 [bile salt export pump (BSEP)] rs4668115 reduce transporter expression (P < 0.05) and were associated with ≥grade 3 transaminitis developing 24 hours after the third infusion of mithramycin (25 mcg/kg, 6 hours/infusion, every day ×7, every 28 days; P < 0.0040). A similar relationship was observed in a pediatric cohort. We therefore undertook to characterize the mechanism of mithramycin-induced acute transaminitis. As mithramycin affects cellular response to bile acid treatment by altering the expression of multiple bile transporters (e.g., ABCB4, ABCB11, sodium/taurocholate cotransporting polypeptide, organic solute transporter α/ß) in several cell lines [Huh7, HepaRG, HepaRG BSEP (-/-)] and primary human hepatocytes, we hypothesized that mithramycin inhibited bile-mediated activation of the farnesoid X receptor (FXR). FXR was downregulated in all hepatocyte cell lines and primary human hepatocytes (P < 0.0001), and mithramycin inhibited chenodeoxycholic acid- and GW4046-induced FXR-galactose-induced gene 4 luciferase reporter activity (P < 0.001). Mithramycin promoted glycochenodeoxycholic acid-induced cytotoxicity in ABCB11 (-/-) cells and increased the overall intracellular concentration of bile acids in primary human hepatocytes grown in sandwich culture (P < 0.01). Mithramycin is a FXR expression and FXR transactivation inhibitor that inhibits bile flow and potentiates bile-induced cellular toxicity, particularly in cells with low ABCB11 function. These results suggest that mithramycin causes hepatotoxicity through derangement of bile acid disposition; results also suggest that pharmacogenomic markers may be useful to identify patients who may tolerate higher mithramycin doses. SIGNIFICANCE STATEMENT: The present study characterizes a novel mechanism of drug-induced hepatotoxicity in which mithramycin not only alters farnesoid X receptor (FXR) and small heterodimer partner gene expression but also inhibits bile acid binding to FXR, resulting in deregulation of cellular bile homeostasis. Two novel single-nucleotide polymorphisms in bile flow transporters are associated with mithramycin-induced liver function test elevations, and the present results are the rationale for a genotype-directed clinical trial using mithramycin in patients with thoracic malignancies.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Membrane Transport Proteins/genetics , Plicamycin/adverse effects , Thoracic Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Adult , Aged , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/genetics , Clinical Trials, Phase II as Topic , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Membrane Transport Proteins/metabolism , Middle Aged , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Thoracic Neoplasms/genetics , Thoracic Neoplasms/metabolism
6.
Mol Cancer Res ; 15(8): 1096-1105, 2017 08.
Article in English | MEDLINE | ID: mdl-28389619

ABSTRACT

Castration-resistant prostate cancer (CRPC) has greater intratumoral testosterone concentrations than similar tumors from eugonadal men; simple diffusion does not account for this observation. This study was undertaken to ascertain the androgen uptake kinetics, functional, and clinical relevance of de novo expression of the steroid hormone transporter OATP1B3 (SLCO1B3). Experiments testing the cellular uptake of androgens suggest that testosterone is an excellent substrate of OATP1B3 (Km = 23.2 µmol/L; Vmax = 321.6 pmol/mg/minute), and cells expressing a doxycycline-inducible SLCO1B3 construct had greater uptake of a clinically relevant concentration of 3H-testosterone (50 nmol/L; 1.6-fold, P = 0.0027). When compared with Slco1b2 (-/-) mice, Slco1b2 (-/-)/hSLCO1B3 knockins had greater hepatic uptake (15% greater AUC, P = 0.0040) and lower plasma exposure to 3H-testosterone (17% lower AUC, P = 0.0030). Of 82 transporters genes, SLCO1B3 is the second-most differentially expressed transporter in CRPC cell lines (116-fold vs. androgen-sensitive cells), with a differentially spliced cancer-type ct-SLCO1B3 making up the majority of SLCO1B3 expression. Overexpression of SLCO1B3 in androgen-responsive cells results in 1.5- to 2-fold greater testosterone uptake, whereas siRNA knockdown of SLCO1B3 in CRPC cells did not change intracellular testosterone concentration. Primary human prostate tumors express SLCO1B3 to a greater extent than ct-SLCO1B3 (26% of total SLCO1B3 expression vs. 0.08%), suggesting that androgen uptake in these tumor cells also is greater. Non-liver tumors do not differentially express SLCO1B3.Implications: This study suggests that de novo OATP1B3 expression in prostate cancer drives greater androgen uptake and is consistent with previous observations that greater OATP1B3 activity results in the development of androgen deprivation therapy resistance and shorter overall survival. Mol Cancer Res; 15(8); 1096-105. ©2017 AACR.


Subject(s)
Androgens/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Testosterone/metabolism , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice, Knockout , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Small Interfering/genetics , Testosterone/administration & dosage
7.
Front Pharmacol ; 7: 260, 2016.
Article in English | MEDLINE | ID: mdl-27574509

ABSTRACT

OBJECTIVES: The recommended zolpidem starting dose was lowered in females (5 mg vs. 10 mg) since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK) is unknown. We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH) expression. METHODS: Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, ± disulfiram (ADH/ALDH pathway inhibitor) to compare PK changes induced by sex and gonadal hormones. PK analyses were conducted in rat plasma and rat brain. KEY FINDINGS: Sex differences in PK were evident: females had a higher C MAX (112.4 vs. 68.1 ug/L) and AUC (537.8 vs. 231.8 h(∗)ug/L) than uncastrated males. Castration induced an earlier T MAX (0.25 vs. 1 h), greater C MAX (109.1 vs. 68.1 ug/L), and a corresponding AUC increase (339.7 vs. 231.8 h(∗)ug/L). Administration of disulfiram caused more drastic C MAX and T MAX changes in male vs. female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations. CONCLUSION: These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens.

8.
Mol Pharmacol ; 87(6): 1006-12, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25829060

ABSTRACT

Enzalutamide is a potent second-generation androgen receptor (AR) antagonist with activity in metastatic castrate-resistant prostate cancer (CRPC). Although enzalutamide is initially effective, disease progression inevitably ensues with the emergence of resistance. Intratumoral hypoxia is also associated with CRPC progression and treatment resistance. Given that both AR and hypoxia inducible factor-1 α (HIF-1α) are key regulators of these processes, dual targeting of both signaling axes represents an attractive therapeutic approach. Crosstalk of the AR and HIF-1α signaling pathways were examined in prostate cancer cell lines (LNCaP, 22Rv1) with assays measuring the effect of androgen and hypoxia on AR-dependent and hypoxia-inducible gene transcription, protein expression, cell proliferation, and apoptosis. HIF-1α inhibition was achieved by siRNA silencing HIF-1α or via chetomin, a disruptor of HIF-1α-p300 interactions. In prostate cancer cells, the gene expression of AR targets (KLK3, FKBP5, TMPRSS2) was repressed by HIF-signaling; conversely, specific HIF-1α target expression was induced by dihydrotestosterone-mediated AR signaling. Treatment of CRPC cells with enzalutamide or HIF-1α inhibition attenuated AR-regulated and HIF-1α-mediated gene transcription. The combination of enzalutamide and HIF-1α inhibition was more effective than either treatment alone. Similarly, the combination also reduced vascular endothelial growth factor protein levels. HIF-1α siRNA synergistically enhanced the inhibitory effect of enzalutamide on cell growth in LNCaP and enzalutamide-resistant 22Rv1 cells via increased enzalutamide-induced apoptosis. In conclusion, the combination of enzalutamide with HIF-1α inhibition resulted in synergistic inhibition of AR-dependent and gene-specific HIF-dependent expression and prostate cancer cell growth.


Subject(s)
Antineoplastic Agents/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism , Benzamides , Cell Hypoxia , Cell Line, Tumor/drug effects , Cobalt/pharmacology , Dihydrotestosterone/pharmacology , Disulfides/pharmacology , Drug Synergism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indole Alkaloids/pharmacology , Male , Nitriles , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/metabolism , RNA, Small Interfering/genetics , Receptors, Androgen/genetics , Signal Transduction , Transcription, Genetic
9.
Cancer Biol Ther ; 16(1): 19-20, 2015.
Article in English | MEDLINE | ID: mdl-25692618

ABSTRACT

Another piece of the thalidomide puzzle is unraveled through structural studies of thalidomide and its derivatives bound to its protein target cereblon. Two recent studies published in Nature (Fischer et al.) and Nature Structural & Molecular Biology (Chamberlain et al.) have shed light on the drug's mechanisms of action and its complex biological effects.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thalidomide/chemistry , Thalidomide/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Humans , Thalidomide/therapeutic use
10.
Biochim Biophys Acta ; 1846(2): 446-56, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25199985

ABSTRACT

The crucial role of androgens in the development of prostate cancer is well established. The aim of this review is to examine the role of constitutional (germline) and tumor-specific (somatic) polymorphisms within important regulatory genes of prostate cancer. These include genes encoding enzymes of the androgen biosynthetic pathway, the androgen receptor gene, genes that encode proteins of the signal transduction pathways that may have a role in disease progression and survival, and genes involved in prostate cancer angiogenesis. Characterization of deregulated pathways critical to cancer cell growth have lead to the development of new treatments, including the CYP17 inhibitor abiraterone and clinical trials using novel drugs that are ongoing or recently completed [1]. The pharmacogenetics of the drugs used to treat prostate cancer will also be addressed. This review will define how germline polymorphisms are known affect a multitude of pathways, and therefore phenotypes, in prostate cancer etiology, progression, and treatment.


Subject(s)
Polymorphism, Genetic , Prostatic Neoplasms/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Androgens/biosynthesis , Genome-Wide Association Study , Humans , Male , Membrane Proteins/genetics , Pharmacogenetics , Receptors, Androgen/genetics
11.
Methods Mol Biol ; 1175: 91-120, 2014.
Article in English | MEDLINE | ID: mdl-25150868

ABSTRACT

This chapter provides a review of the pharmacogenetics of membrane transporters, including ABC transporters and OATPs. Membrane transporters are heavily involved in drug disposition, by actively transporting substrate drugs between organs and tissues. As such, polymorphisms in the genes encoding these proteins may have a significant effect on the absorption, distribution, metabolism, excretion, and activity of compounds. Although few drug transporter polymorphisms have transitioned from the bench to the bedside, this chapter discusses clinical development of transporter pharmacogenetic markers. Finally, development of SLCO1B1 genotyping to avoid statin induced adverse drug reactions is discussed as a model case for transporter pharmacogenetics clinical development.


Subject(s)
Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Pharmacogenetics , Animals , Drug-Related Side Effects and Adverse Reactions/genetics , Genetic Variation , Genotype , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver-Specific Organic Anion Transporter 1 , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Phenotype , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...