Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 101(20): 7511-5, 2004 May 18.
Article in English | MEDLINE | ID: mdl-15136731

ABSTRACT

Sensor formats have been developed for detecting the activity of proteolytic enzymes based on fluorescent conjugated polymer superquenching. These sensors employ a reactive peptide sequence within a tether linking a quencher to a biotin. The peptide binds to sensors containing colocated biotin-binding protein and fluorescent polymer by means of biotin-biotin binding protein interactions, resulting in a strong quenching of polymer fluorescence. Enzyme-mediated cleavage of the peptide results in a reversal of the fluorescence quenching. These assays for protease activity are simple, sensitive, fast, and have the specificity required for screening chemical libraries for novel protease inhibitors in a high-throughput screening assay environment. These assays have been demonstrated for enterokinase, caspase-3/7, and beta-secretase.


Subject(s)
Aspartic Acid Endopeptidases/analysis , Caspases/analysis , Cysteine Endopeptidases/analysis , Enteropeptidase/analysis , Polymers/metabolism , Chromatography, High Pressure Liquid , Fluorescence
2.
Inorg Chem ; 35(24): 7102-7110, 1996 Nov 20.
Article in English | MEDLINE | ID: mdl-11666893

ABSTRACT

A photochemical and photophysical investigation was carried out on (tbubpy)Pt(II)(dpdt) and (tbubpy)Pt(II)(edt) (1 and 2, respectively, where tbubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, dpdt = meso-1,2-diphenyl-1,2-ethanedithiolate and edt = 1,2-ethanedithiolate). Luminescence and transient absorption studies reveal that these complexes feature a lowest excited state with Pt(S)(2) --> tbubpy charge transfer to diimine character. Both complexes are photostable in deoxygenated solution; however, photolysis into the visible charge transfer band in air-saturated solution induces moderately efficient photooxidation. Photooxidation of 1 produces the dehydrogenation product (tbubpy)Pt(II)(1,2-diphenyl-1,2-ethenedithiolate) (4). By contrast, photooxidation of 2 produces S-oxygenated complexes in which one or both thiolate ligands are converted to sulfinate (-SO(2)R) ligands. Mechanistic photochemical studies and transient absorption spectroscopy reveal that photooxidation occurs by (1) energy transfer from the charge transfer to diimine excited state of 1 to (3)O(2) to produce (1)O(2) and (2) reaction between (1)O(2) and the ground state 1. Kinetic data indicates that excited state 1 produces (1)O(2) efficiently and that reaction between ground state 1 and (1)O(2) occurs with k approximately 3 x 10(8) M(-)(1) s(-)(1).

SELECTION OF CITATIONS
SEARCH DETAIL
...