Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 32(16): e1905035, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32104961

ABSTRACT

Excess/unreacted lead iodide (PbI2 ) has been commonly used in perovskite films for the state-of-the-art solar cell applications. However, an understanding of intrinsic degradation mechanisms of perovskite solar cells (PSCs) containing unreacted PbI2 has been still insufficient and, therefore, needs to be clarified for better operational durability. Here, it is shown that degradation of PSCs is hastened by unreacted PbI2 crystals under continuous light illumination. Unreacted PbI2 undergoes photodecomposition under illumination, resulting in the formation of lead and iodine in films. Thus, this photodecomposition of PbI2 is one of the main reasons for accelerated device degradation. Therefore, this work reveals that carefully controlling the formation of unreacted PbI2 crystals in perovskite films is very important to improve device operational stability for diverse opto-electronic applications in the future.

2.
Nature ; 572(7770): 502-506, 2019 08.
Article in English | MEDLINE | ID: mdl-31358964

ABSTRACT

Organic light-emitting diode (OLED) technology is promising for applications in next-generation displays and lighting. However, it is difficult-especially in large-area mass production-to cover a large substrate uniformly with organic layers, and variations in thickness cause the formation of shunting paths between electrodes1,2, thereby lowering device production yield. To overcome this issue, thicker organic transport layers are desirable because they can cover particles and residue on substrates, but increasing their thickness increases the driving voltage because of the intrinsically low charge-carrier mobilities of organics. Chemical doping of organic layers increases their electrical conductivity and enables fabrication of thicker OLEDs3,4, but additional absorption bands originating from charge transfer appear5, reducing electroluminescence efficiency because of light absorption. Thick OLEDs made with organic single crystals have been demonstrated6, but are not practical for mass production. Therefore, an alternative method of fabricating thicker OLEDs is needed. Here we show that extraordinarily thick OLEDs can be fabricated by using the organic-inorganic perovskite methylammonium lead chloride, CH3NH3PbCl3 (MAPbCl3), instead of organics as the transport layers. Because MAPbCl3 films have high carrier mobilities and are transparent to visible light, we were able to increase the total thickness of MAPbCl3 transport layers to 2,000 nanometres-more than ten times the thickness of standard OLEDs-without requiring high voltage or reducing either internal electroluminescence quantum efficiency or operational durability. These findings will contribute towards a higher production yield of high-quality OLEDs, which may be used for other organic devices, such as lasers, solar cells, memory devices and sensors.

3.
ACS Appl Mater Interfaces ; 10(26): 22513-22519, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29879837

ABSTRACT

Organic field-effect transistors (OFETs) are the most fundamental device units in organic electronics. Interface engineering at the semiconductor/dielectric interface is an effective approach for improving device performance, particularly for enhancing charge transport in conducting channels. Here, we report flat-lying molecular monolayers that exhibit good uniformity and high crystallinity at the semiconductor/dielectric interface, deposited through slow thermal evaporation. Transistor devices achieve high carrier mobility up to 2.80 cm2 V-1 s-1, which represents a remarkably improvement in device performance compared with devices that are completely based on fast-evaporated films. Interfacial flat-lying monolayers benefit charge transport by suppressing the polarization of dipoles and narrowing the broadening of trap density of states. Our work provides a promising strategy for enhancing the performance of OFETs by using interfacial flat-lying molecular monolayers.

4.
Phys Chem Chem Phys ; 20(22): 15030-15036, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29789829

ABSTRACT

Organo-metal-halide perovskites are a promising set of materials for optoelectronic applications such as solar cells, light emitting diodes and lasers. Perovskite thin films have demonstrated amplified spontaneous emission thresholds as low as 1.6 µJ cm-2 and lasing thresholds as low as 0.2 µJ cm-2. Recently the performance of perovskite light emitting diodes has rapidly risen due to the formation of quasi 2D films using bulky ligands such as phenylethylammonium. Despite the high photoluminescent yield and external quantum efficiency of quasi 2D perovskites, few reports exist on amplified spontaneous emission. We show within this report that the threshold for amplified spontaneous emission of quasi 2D perovskite films increases with the concentration of phenylethylammonium. We attribute this increasing threshold to a charge transfer state at the PEA interface that competes for excitons with the ASE process. Additionally, the comparatively slow inter-grain charge transfer process cannot significantly contribute to the fast radiative recombination in amplified spontaneous emission. These results suggest that relatively low order PEA based perovskite films that are suitable for LED applications are not well suited for lasing applications. However high order films were able to maintain their low threshold values and may still benefit from improved stability.

5.
J Phys Chem B ; 122(2): 511-520, 2018 01 18.
Article in English | MEDLINE | ID: mdl-28514169

ABSTRACT

The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO2, but the device is not stable and degrades rapidly. With an amorphous TiO2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO2. Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH3NH3PbI3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO2 and CH3NH3PbI3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO2 can enhance device stability, strongly suggests that the interface interaction between TiO2 and CH3NH3PbI3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.

6.
J Phys Chem Lett ; 8(14): 3193-3198, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28649837

ABSTRACT

Organo-lead-halide perovskites are promising materials for optoelectronic applications. Perovskite solar cells have reached power conversion efficiencies of over 22%, and perovskite light-emitting diodes have recently achieved over 11% external quantum efficiency. To date, most research on perovskite light-emitting diodes has focused on solution-processed films. There are many advantages of a vapor-based growth process to prepare perovskites, including ease of patterning, ability to batch process, and material compatibility. We investigated an all-vapor perovskite growth process by chemical vapor deposition and demonstrated luminance up to 560 cd/m2.

7.
ACS Appl Mater Interfaces ; 7(3): 1833-40, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25545199

ABSTRACT

The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.

8.
Nanotechnology ; 24(35): 355502, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23917462

ABSTRACT

We demonstrate that micron-scale graphene field-effect transistor biosensors can be fabricated in a scalable fashion from large-area chemical vapor deposition derived graphene. We electrically detect the real-time binding and unbinding of a protein biomarker, thrombin, to and from aptamer-coated graphene surfaces. Our sensors have low background noise and high transconductance, comparable to exfoliated graphene devices. The devices are reusable and have a shelf-life greater than one week.


Subject(s)
Biosensing Techniques/instrumentation , Graphite/chemistry , Thrombin/analysis , Aptamers, Nucleotide/metabolism , Equipment Design , Humans , Models, Molecular , Protein Binding , Surface Properties , Thrombin/metabolism , Transistors, Electronic
9.
Lab Chip ; 12(5): 954-9, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22252647

ABSTRACT

Biosensor response time, which depends sensitively on the transport of biomolecules to the sensor surface, is a critical concern for future biosensor applications. We have fabricated carbon nanotube field-effect transistor biosensors and quantified protein binding rates onto these nanoelectronic sensors. Using this experimental platform we test the effectiveness of a protein repellent coating designed to enhance protein flux to the all-electronic real-time biosensor. We observe a 2.5-fold increase in the initial protein flux to the sensor when upstream binding sites are blocked. Mass transport modelling is used to calculate the maximal flux enhancement that is possible with this strategy. Our results demonstrate a new methodology for characterizing nanoelectronic biosensor performance, and demonstrate a mass transport optimization strategy that is applicable to a wide range of microfluidic based biosensors.


Subject(s)
Biosensing Techniques , Electronics , Microfluidics , Nanotechnology , Polylysine/chemistry , Time Factors
10.
Nano Lett ; 8(11): 3568-71, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18811211

ABSTRACT

We show that the number of concentric graphene cylinders forming a carbon nanotube can be found by squeezing the tube between an atomic force microscope tip and a silicon substrate. The compressed height of a single-walled nanotube (double-walled nanotube) is approximately two (four) times the interlayer spacing of graphite. Measured compression forces are consistent with the predicted bending modulus of graphene and provide a mechanical signature for identifying individual single-walled and double-walled nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...