Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37873383

ABSTRACT

The rational combination of anticancer agents is critical to improving patient outcomes in cancer. Nonetheless, most combination regimens in the clinic result from empirical methodologies disregarding insight into the mechanism of action and missing the opportunity to improve therapy outcomes incrementally. Deciphering the genetic dependencies and vulnerabilities responsible for synergistic interactions is crucial for rationally developing effective anticancer drug combinations. Hence, we screened pairwise pharmacological interactions between molecular-targeted agents and conventional chemotherapeutics and examined the genome-scale genetic dependencies in gastric adenocarcinoma cell models. Since this type of cancer is mainly chemoresistant and incurable, clinical situations demand effective combination strategies. Our pairwise combination screen revealed SN38/erlotinib as the drug pair with the most robust synergism. Genome-wide CRISPR screening and a shRNA-based signature assay indicated that the genetic dependency/vulnerability signature of SN38/erlotinib is the same as SN38 alone. Additional investigation revealed that the enhanced cell death with improved death kinetics caused by the SN38/erlotinib combination is surprisingly due to erlotinib's off-target effect that inhibits ABCG2 but not its on-target effect on EGFR. Our results confirm that a genetic dependency signature different from the single-drug application may not be necessary for the synergistic interaction of molecular-targeted agents with conventional chemotherapeutics in gastric adenocarcinoma. The findings also demonstrated the efficacy of functional genomics approaches in unveiling biologically validated mechanisms of pharmacological interactions.

2.
ACS Med Chem Lett ; 11(12): 2491-2496, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335672

ABSTRACT

A red-absorbing, water-soluble, and iodinated resorufin derivative (R1) that can be selectively activated with a monoamine oxidase (MAO) enzyme was synthesized, and its potential as a photodynamic therapy (PDT) agent was evaluated. R1 showed high 1O2 generation yields in aqueous solutions upon addition of MAO isoforms, and it was further tested in cell culture studies. R1 induced photocytotoxicity after being triggered by endogenous MAO enzyme in cancer cells with a much higher efficiency in SH-SY5Y neuroblastoma cells with high MAO-A expression. Additionally, R1 displayed differential cytotoxicity between cancer and normal cells, without any considerable dark toxicity. To the best of our knowledge, R1 marks the first example of a resorufin-based photosensitizer (PS) as well as the first anticancer drug that is activated by a MAO enzyme. Remarkably, the target PDT agent was obtained only in three steps as a result of versatile resorufin chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...