Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Rev Camb Philos Soc ; 99(3): 1075-1084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38287495

ABSTRACT

Phenology is a key adaptive trait of organisms, shaping biotic interactions in response to the environment. It has emerged as a critical topic with implications for societal and economic concerns due to the effects of climate change on species' phenological patterns. Fungi play essential roles in ecosystems, and plant pathogenic fungi have significant impacts on global food security. However, the phenology of plant pathogenic fungi, which form a huge and diverse clade of organisms, has received limited attention in the literature. This diversity may have limited the use of a common language for comparisons and the integration of phenological data for these taxonomic groups. Here, we delve into the concept of 'phenology' as applied to plant pathogenic fungi and explore the potential drivers of their phenology, including environmental factors and the host plant. We present the PhenoFun scale, a phenological scoring system suitable for use with all fungi and fungus-like plant pathogens. It offers a standardised and common tool for scientists studying the presence, absence, or predominance of a particular phase, the speed of phenological phase succession, and the synchronism shift between pathogenic fungi and their host plants, across a wide range of environments and ecosystems. The application of the concept of 'phenology' to plant pathogenic fungi and the use of a phenological scoring system involves focusing on the interacting processes between the pathogenic fungi, their hosts, and their biological, physical, and chemical environment, occurring during the life cycle of the pathogen. The goal is to deconstruct the processes involved according to a pattern orchestrated by the fungus's phenology. Such an approach will improve our understanding of the ecology and evolution of such organisms, help to understand and anticipate plant disease epidemics and their future evolution, and make it possible to optimise management models, and to encourage the adoption of cropping practices designed from this phenological perspective.


Subject(s)
Fungi , Plant Diseases , Fungi/physiology , Fungi/pathogenicity , Plant Diseases/microbiology , Plants/microbiology , Climate Change , Host-Pathogen Interactions
2.
Front Plant Sci ; 9: 1820, 2018.
Article in English | MEDLINE | ID: mdl-30568671

ABSTRACT

Investigations into life history of microorganisms that cause plant diseases have been limited mostly to contexts where they are in interaction with plants, and with cropped or otherwise managed vegetation. Therefore, knowledge about the diversity of plant pathogens, about potential reservoirs of inoculum and about the processes that contribute to their survival and adaptation is limited to these contexts. The agro-centric perspective of plant pathogen life histories is incoherent with respect to the capacity of many of them to persist as saprophytes on various substrates. In this context we have investigated the ubiquity of the broad host range necrotrophic fungus Botrytis cinerea, outside of agricultural settings and have determined if the populations in these natural habitats can be distinguished phenotypically and phylogenetically from populations isolated from diseased crops. Over a period of 5 years, we isolated B. cinerea from 235 samples of various substrates collected in France including rainfall, snowpack, river, and lake water, epilithic biofilms in mountain streams, leaf litter and plant debris, rock surfaces, bird feathers and healthy wild plants from outside of agricultural fields. All substrates except rock surfaces harbored B. cinerea leading us to establish a collection of purified strains that were compared to B. cinerea from diseased tomato, grapes and various other crops in France. Phylogenetic comparisons of 321 strains from crop plants and 100 strains from environmental substrates based on sequences of 9 microsatellite markers revealed that strains from crops and the environment could not be distinguished. Furthermore, the genetic diversity of strains outside of agriculture was just as broad as within agriculture. In tests to determine the aggressiveness of strains on tomato stems, the mean disease severity caused by strains from environmental substrates was statistically identical to the severity of disease caused by strains from tomato, but was significantly greater than the severity caused by strains from grape or other crops. Our results suggest that highly diverse populations of this plant pathogen persist outside of agriculture in association with substrates other than plants and that this part of their life history is compatible with its capacity to maintain its potential as plant pathogen.

3.
Front Microbiol ; 9: 2257, 2018.
Article in English | MEDLINE | ID: mdl-30337908

ABSTRACT

Many phytopathogenic fungi are disseminated as spores via the atmosphere from short to long distances. The distance of dissemination determines the extent to which plant diseases can spread and novel genotypes of pathogens can invade new territories. Predictive tools including models that forecast the arrival of spores in areas where susceptible crops are grown can help to more efficiently manage crop health. However, such models are difficult to establish for fungi with broad host ranges because sources of inoculum cannot be readily identified. Sclerotinia sclerotiorum, the pandemic agent of white mold disease, can attack >400 plant species including economically important crops. Monitoring airborne inoculum of S. sclerotiorum in several French cropping areas has shown that viable ascospores are present in the air almost all the time, even when no susceptible crops are nearby. This raises the hypothesis of a distant origin of airborne inoculum. The objective of the present study was to determine the interconnectivity of reservoirs of S. sclerotiorum from distant regions based on networks of air mass movement. Viable airborne inoculum of S. sclerotiorum was collected in four distinct regions of France and 498 strains were genotyped with 16 specific microsatellite markers and compared among the regions. Air mass movements were inferred using the HYSPLIT model and archived meteorological data from the global data assimilation system (GDAS). The results show that up to 700 km could separate collection sites that shared the same haplotypes. There was low or no genetic differentiation between strains collected from the four sites. The rate of aerial connectivity between two sites varied according to the direction considered. The results also show that the aerial connectivity between sites is a better indicator of the probability of the incoming component (PIC) of inoculum at a given site from another one than is geographic distance. We identified the links between specific sites in the trajectories of air masses and we quantified the frequencies at which the directional links occurred as a proof-of-concept for an operational method to assess the arrival of airborne inoculum in a given area from distant origins.

4.
PLoS One ; 10(3): e0120703, 2015.
Article in English | MEDLINE | ID: mdl-25803832

ABSTRACT

The question as to why parasites remain generalist or become specialist is a key unresolved question in evolutionary biology. Ampelomyces spp., intracellular mycoparasites of powdery mildew fungi, which are themselves plant pathogens, are a useful model for studies of this issue. Ampelomyces is used for the biological control of mildew. Differences in mycohost phenology promote temporal isolation between sympatric Ampelomyces mycoparasites. Apple powdery mildew (APM) causes spring epidemics, whereas other powdery mildew species on plants other than apple cause epidemics later in the season. This has resulted in genetic differentiation between APM and non-APM strains. It is unclear whether there is genetic differentiation between non-APM Ampelomyces lineages due to their specialization on different mycohosts. We used microsatellites to address this question and found no significant differentiation between non-APM Ampelomyces strains from different mycohosts or host plants, but strong differentiation between APM and non-APM strains. A geographical structure was revealed in both groups, with differences between European countries, demonstrating restricted dispersal at the continent scale and a high resolution for our markers. We found footprints of recombination in both groups, possibly more frequent in the APM cluster. Overall, Ampelomyces thus appears to be one of the rare genuine generalist pathogenic fungi able to parasitize multiple hosts in natural populations. It is therefore an excellent model for studying the evolution of pathogens towards a generalist rather than host-specific strategy, particularly in light of the tritrophic interaction between Ampelomyces mycoparasites, their powdery mildew fungal hosts and the mildew host plants.


Subject(s)
Ascomycota/genetics , DNA, Fungal/genetics , Microsatellite Repeats , Plant Diseases/microbiology , Plants/microbiology , DNA, Fungal/isolation & purification , Genetic Variation , Linkage Disequilibrium , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...