Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(10): e76683, 2013.
Article in English | MEDLINE | ID: mdl-24194843

ABSTRACT

Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.


Subject(s)
Bees/genetics , Evolution, Molecular , Extinction, Biological , Phylogeny , Animals , Base Sequence , Bayes Theorem , Bees/classification , Bees/physiology , DNA, Mitochondrial/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Paleontology , Peptide Elongation Factor 1/genetics , Phylogeography , Sequence Analysis, DNA , Species Specificity
2.
PLoS One ; 7(4): e34690, 2012.
Article in English | MEDLINE | ID: mdl-22511959

ABSTRACT

The origin of sterile worker castes, resulting in eusociality, represents one of the major evolutionary transitions in the history of life. Understanding how eusociality has evolved is therefore an important issue for understanding life on earth. Here we show that in the large bee subfamily Xylocopinae, a simple form of sociality was present in the ancestral lineage and there have been at least four reversions to purely solitary nesting. The ancestral form of sociality did not involve morphological worker castes and maximum colony sizes were very small. True worker castes, entailing a life-time commitment to non-reproductive roles, have evolved only twice, and only one of these resulted in discrete queen-worker morphologies. Our results indicate extremely high barriers to the evolution of eusociality. Its origins are likely to have required very unusual life-history and ecological circumstances, rather than the amount of time that selection can operate on more simple forms of sociality.


Subject(s)
Bees/physiology , Selection, Genetic , Social Behavior , Animals , Bayes Theorem , Bees/classification , Behavior, Animal , Biological Evolution , Hierarchy, Social , Likelihood Functions , Phylogeny
3.
Biol Lett ; 3(4): 422-4, 2007 Aug 22.
Article in English | MEDLINE | ID: mdl-17504731

ABSTRACT

Evidence for the antiquity and importance of microbial pathogens as selective agents is found in the proliferation of antimicrobial defences throughout the animal kingdom. Social insects, typified by crowding and often by low genetic variation, have high probabilities of disease transmission and eusocial Hymenoptera may be particularly vulnerable because of haplodiploidy. Mechanisms they employ to reduce the risk of disease include antimicrobial secretions which are particularly important primary barriers to infection. However, until now, whether or not there is selection for stronger antimicrobial secretions when the risk of disease increases because of sociality has not been tested. Here, we present evidence that the production of progressively stronger antimicrobial compounds was critical to the evolution of sociality in bees. We found that increases in group size and genetic relatedness were strongly correlated with increasing antimicrobial strength. The antimicrobials of even the most primitive semi-social species were an order of magnitude stronger that those of solitary species, suggesting a point of no return, beyond which disease control was essential. Our results suggest that selection by microbial pathogens was critical to the evolution of sociality and required the production of strong, front-line antimicrobial defences.


Subject(s)
Anti-Infective Agents/metabolism , Bees/physiology , Behavior, Animal/physiology , Social Behavior , Animals , Anti-Infective Agents/pharmacology , Biological Evolution , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
4.
Mol Ecol ; 16(7): 1533-44, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17391274

ABSTRACT

In 1998, a unique subterranean ecosystem was discovered in numerous isolated calcrete (carbonate) aquifers in the arid Yilgarn region of Western Australia. Previous morphological and genetic analyses of a subterranean water beetle fauna suggest that calcrete aquifers are equivalent to closed island habitats that have been isolated for millions of years. We tested this hypothesis further by phylogeographic analyses of subterranean amphipods (Crangonyctoidea: Paramelitidae and Hyalidae) using mitochondrial DNA sequence data derived from the cytochrome oxidase I gene. Phylogenetic analyses and population genetic analyses (samova) provided strong evidence for the existence of at least 16 crangonyctoid and six hyalid divergent mitochondrial lineages, each restricted in their distribution to a single calcrete aquifer, in support of the 'subterranean island (archipelago) hypothesis' and extending its scope to include entirely water respiring invertebrates. Sequence divergence estimates between proximate calcrete populations suggest that calcretes have been isolated at least since the Pliocene, coinciding with a major aridity phase that led to the intermittent drying of surface water. The distribution of calcretes along palaeodrainage channels and on either side of drainage divides, have had less influence on the overall phylogeographic structure of populations, with evidence that ancestral crangonyctoid and hyalid species moved between catchments multiple times prior to their isolation within calcretes. At least two potential modes of evolution may account for the diversity of subterranean amphipod populations: dispersal/vicariance of stygobitic species or colonization of calcretes by surface species and independent evolution of stygobitic characteristics.


Subject(s)
Amphipoda/genetics , Demography , Ecosystem , Genetic Variation , Genetics, Population , Phylogeny , Analysis of Variance , Animals , Base Sequence , Bayes Theorem , DNA Primers , DNA, Mitochondrial/genetics , Geography , Models, Genetic , Molecular Sequence Data , Population Dynamics , Sequence Analysis, DNA , Western Australia
5.
Mol Biol Evol ; 22(6): 1393-402, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15758201

ABSTRACT

The molecular clock does not tick at a uniform rate in all taxa but may be influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of "nearly neutral" mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.


Subject(s)
Evolution, Molecular , Models, Genetic , Sociobiology , Animals , Ants/genetics , Bees/genetics , Crustacea/genetics , DNA/genetics , DNA, Mitochondrial/genetics , Isoptera/genetics , Mole Rats/genetics , Mutation , Phylogeny , RNA/genetics , Time Factors , Wasps/genetics
6.
Biol Lett ; 1(4): 496-9, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-17148242

ABSTRACT

Regressive evolution, the reduction or total loss of non-functional characters, is a fairly common evolutionary phenomenon in subterranean taxa. However, the genetic basis of regressive evolution is not well understood. Here we investigate the molecular evolution of the eye pigment gene cinnabar in several independently evolved lineages of subterranean water beetles using maximum likelihood analyses. We found that in eyeless lineages cinnabar has an increased rate of sequence evolution, as well as mutations leading to frame shifts and stop codons, indicative of pseudogenes. These results are consistent with the hypothesis that regressive evolution of eyes proceeds by random mutations, in the absence of selection, that ultimately lead to the loss of gene function in protein-coding genes specific to the eye pathway.


Subject(s)
Coleoptera/genetics , Evolution, Molecular , Genes, Insect , Kynurenine 3-Monooxygenase/genetics , Amino Acid Sequence , Animals , Base Sequence , Coleoptera/anatomy & histology , Mutation , Sequence Alignment
7.
Evolution ; 57(12): 2819-34, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14761060

ABSTRACT

Calcrete aquifers in arid inland Australia have recently been found to contain the world's most diverse assemblage of subterranean diving beetles (Coleoptera: Dytiscidae). In this study we test whether the adaptive shift hypothesis (ASH) or the climatic relict hypothesis (CRH) is the most likely mode of evolution for the Australian subterranean diving beetles by using a phylogeny based on two sequenced fragments of mitochondrial genes (CO1 and 16S-tRNA-ND1) and linearized using a relaxed molecular clock method. Most individual calcrete aquifers contain an assemblage of diving beetle species of distantly related lineages and/or a single pair of sister species that significantly differ in size and morphology. Evolutionary transitions from surface to subterranean life took place in a relatively small time frame between nine and four million years ago. Most of the variation in divergence times of the sympatric sister species is explained by the variation in latitude of the localities, which correlates with the onset of aridity from the north to the south and with an aridity maximum in the Early Pliocene (five mya). We conclude that individual calcrete aquifers were colonized by several distantly related diving beetle lineages. Several lines of evidence from molecular clock analyses support the CRH, indicating that all evolutionary transitions took place during the Late Miocene and Early Pliocene as a result of aridification.


Subject(s)
Adaptation, Biological , Coleoptera/genetics , Diving/physiology , Evolution, Molecular , Phylogeny , Animals , Australia , Base Sequence , Bayes Theorem , Coleoptera/physiology , DNA Primers , DNA, Mitochondrial/genetics , Desert Climate , Fresh Water , Geography , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...