Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 132985, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871103

ABSTRACT

Triacylglycerols (TAGs) are a primary energy source for marine mammals during lipid digestion. Walruses (Odobenus rosmarus divergens) consume prey with a high content of long-chain polyunsaturated fatty acids; however, their digestive physiology and lipid digestion remain poorly studied. The present study aims to model and characterize the gastric (PWGL) and pancreatic (PWPL) lipases of Pacific walruses using an in-silico approach. The confident 3D models of PWGL and PWPL were obtained via homology modeling and protein threading and displayed the structural features of lipases. Molecular docking analysis demonstrated substrate selectivity for long-chain TAG (Trieicosapentaenoin; TC20:5n-3) in PWGL and short-chain TAG (Trioctanoin; TC8:0) in PWPL. Molecular dynamics simulations demonstrate that PWGL maintains structural stability at salinity conditions, with no significant conformational changes observed. In the simulations of PWGL bound to tridocosahexaenoin (TC22:6n-3), the protein is considerably stable at all three salinity conditions, but fluctuations are observed in the regions associated with catalytic sites and the lid, indicating the hydrolysis of the substrate. This is the first study to report on the digestion of TAGs in walruses, including modeling and lipases characterization and proposing a digestive tract for pinnipeds.

2.
PeerJ ; 11: e16417, 2023.
Article in English | MEDLINE | ID: mdl-38144177

ABSTRACT

Jellyfish are economically important organisms in diverse countries, carnivorous organisms that consume various prey (crustaceans, mollusks, bivalves, etc.) and dissolved carbohydrates in marine waters. This study was focused on detecting and quantifying the activity of digestive glycosidases from the cannonball jellyfish (Stomolophus sp. 2) to understand carbohydrate digestion and its temporal-spatial variation. Twenty-three jellyfish gastric pouches were collected in 2015 and 2016 in the Gulf of California in three localities (Las Guásimas, Hermosillo, and Caborca). Nine samples were in intra-localities from Las Guásimas. Chitinase (Ch), ß-glucosidase (ß-glu), and ß-N-acetylhexosaminidase (ß-NAHA) were detected in the gastric pouches. However, cellulase, exoglucanase, α-amylase, polygalacturonase, xylanase, and κ-carrageenase were undetected. Detected enzymes showed halotolerant glycolytic activity (i = 0-4 M NaCl), optimal pH, and temperature at 5.0 and 30-50 °C, respectively. At least five ß-glucosidase and two ß-N-acetylhexosaminidase were detected using zymograms; however, the number of proteins with chitinase activity is not precise. The annual variation of cannonball jellyfish digestive glycosidases from Las Guásimas between 2015-2016 does not show significant differences despite the difference in phytoplankton measured as chlorophyll α (1.9 and 3.4 mg/m3, respectively). In the inter-localities, the glycosidase activity was statistically different in all localities, except for ß-N-acetylhexosaminidase activity between Caborca and Hermosillo (3,009.08 ± 87.95 and 3,101.81 ± 281.11 mU/g of the gastric pouch, respectively), with chlorophyll α concentrations of 2.6, 3.4 mg/m3, respectively. For intra-localities, the glycosidase activity did not show significant differences, with a mean chlorophyll α of 1.3 ± 0.1 mg/m3. These results suggest that digestive glycosidases from Stomolophus sp. 2 can hydrolyze several carbohydrates that may belong to their prey or carbohydrates dissolved in marine waters, with salinity over ≥ 0.6 M NaCl and diverse temperature (4-80 °C) conditions. Also, chlorophyll α is related to glycosidase activity in both seasons and inter-localities, except for chitinase activity in an intra-locality (Las Guásimas).


Subject(s)
Cellulases , Chitinases , Scyphozoa , Animals , Glycoside Hydrolases , Sodium Chloride , Scyphozoa/chemistry , beta-N-Acetylhexosaminidases , Carbohydrates , Chlorophyll
3.
Environ Technol ; : 1-14, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37102406

ABSTRACT

Tequila production occurs in Mexico's designated area of origin, principally in the Jalisco State. Its residues are a challenge in treatment and tracking due to a lack of technology, non-economic treatments available, low environmental consciousness and incipient control from authorities. In 2021, average production was close to 1.5 million tequila litres per day with an estimated residue yield of 10-12 litres of stillage (tequila vinasses) per tequila litre produced, including volatile fractions. This research aims to reduce organic matter by electrooxidation (EO) from 5 distillation volatile residual effluents (two-stage still distillation) from three tequila distilleries, first and second-stage heads and heads and tails and second-stage non-evaporated fraction. Round 3 mm titanium (grade-1) electrodes (one anode and one cathode) were used, with fixed voltage to a value of 30 VDC at 0, 3, 6, 9 and 12 h with 75 experiments. Gas chromatography was used to analyse methanol, ethanol, acetaldehyde, ethyl acetate, n-propanol, sec-butanol, iso-butanol, n-butanol, iso-amyl, n-amyl, and ethyl lactate content. Treatment shows positive results, reducing organic matter content in all effluents in a Chemical Oxygen Demand COD range of 580-1880 mg/L.h, particularly useful in the second-stage non-evaporated fraction for water recovery.HIGHLIGHTSResidual effluent treatment is beneficial to environmental and resource sustainability.Process without adding materials achieving cleaner treated effluents.Process aimed as the final step to recover water.This process could help the Tequila industry to reach a higher sustainability level by reducing water usage and untreated residues.

4.
Environ Technol ; 42(22): 3463-3474, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32072869

ABSTRACT

Arsenic presence in the water has become one of the most concerning environmental problems. Electrocoagulation is a technology that offers several advantages over conventional treatments such as chemical coagulation. In the present work, an electrocoagulation system was optimized for arsenic removal at initial concentrations of 100 µg/L using response surface methodology. The effects of studied parameters were determined by a 23 factorial design, whereas treatment time had a positive effect and current intensity had a negative effect on arsenic removal efficiency. With a p-value of 0.1629 and a confidence of level 99%, the type of electrode material did not have a significant effect on arsenic removal. Efficiency over 90% was reached at optimal operating conditions of 0.2 A of current intensity, and 7 min of treatment time using iron as the electrode material. However, the time necessary to accomplish with OMS arsenic guideline of 10 µg/L increased from 7 to 30 min when real arsenic-contaminated groundwater with an initial concentration of 80.2 ± 3.24 µg/L was used. The design of a pilot-scale electrocoagulation reactor was determined with the capacity to meet the water requirement of a 6417 population community in Sonora, Mexico. To provide the 1.0 L/s required, an electrocoagulation reactor with a working volume of 1.79 m3, a total electrode effective surface of 701 m2, operating at a current intensity of 180 A and an operating cost of 0.0208 US$/day was proposed. Based on these results, electrocoagulation can be considered an efficient technology to treat arsenic-contaminated water and meet the drinking water quality standards.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water Purification , Electrocoagulation , Water
5.
PeerJ ; 8: e9794, 2020.
Article in English | MEDLINE | ID: mdl-33194347

ABSTRACT

The digestive system and metabolism of the cannonball jellyfish Stomolophus sp. 2 are not well-known. The digestion study was critical to explain its ecology and bloom success. Different enzymes are involved in food digestion, which hydrolyze carbohydrates, proteins, and lipids. This study detected lipolytic activity in enzymatic extracts from gastric pouches of Stomolophus sp. 2 collected in the summer of 2013 at Bahía de Kino, Sonora, México (28°47'47″N 111°57'25″W). Lipase/esterase activity showed optimal pH at 11.0 and 50-60 °C with a half-life (t1/2) of 33 min at 55 °C, whereas halotolerance of this activity was recorded from 0-4 M NaCl. Metal ions Ca2+ and Mn2+ did not affect the activity, but Mg2+ decreased it 14.2% ± 3.15, while chelating agents as ethylenediaminetetraacetic acid reduced the activity 8.55% ± 2.13. Inhibition of lipase/esterase activity with tetrahydrolipstatin and paraoxon-ethyl decreased the activity 18.2% ± 2.3, and 62.80% ± 0.74, respectively, whereas phenylmethanesulfonyl fluoride (a protease inhibitor) did not affect it. The enzyme displayed a higher specificity for short-chain triglycerides, but triolein, coconut oil, olive oil, and fish oil were hydrolyzed. For the first time, phospholipase activity from the gastric pouch of Stomolophus sp. 2 was detected using L-α-phosphatidylethanolamine from chicken egg yolk as a substrate. These results suggest that Stomolophus sp. 2 hydrolyze several kinds of lipids, and lipolytic enzymes are active at alkaline pH under different saline conditions, which may be essential to digest different preys.

6.
Environ Sci Pollut Res Int ; 27(23): 28597-28606, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32279269

ABSTRACT

Pigments are present in a broad variety of terrestrial and aquatic organisms. The cannonball jellyfish (Stomolophus sp. 2) is an important fishery resource in the northwest of Mexico and is processed to be traded and consumed as seafood. During the process, water with a soluble blue pigment and other compounds are discarded to the environment. In this work, we present some properties of the blue pigment from Stomolophus sp.2 (S2bp), to decide if it could be considered as a potential value-added waste and avoid the blue proteinaceous pigment wastewater. S2bp was purified to homogeneity and had a molecular mass of 28.0 kDa; this protein exhibited a ʎmax at 650 nm, contained Zn2+ and Cu2+ metal ions, and was stable from 10 to 50 °C and in a pH range of 3.0 to 13.0 for 1 h. It had halotolerant characteristics maintaining the blue coloration in a broad range of ionic strength (0-4 M NaCl) and showed changes in ʎmax with chaotropic salts. In addition, S2bp was stable in the presence of organic acids and EDTA and in zwitterionic, anionic, and nonionic detergents at critical micellar concentration. However, oxidant reagents like NaClO and H2O2 decrease the coloration. These results show that the jellyfish pigment is a stable protein which makes it an alternative pigment for the food industry.


Subject(s)
Hydrogen Peroxide , Scyphozoa , Animals , Hydrogen-Ion Concentration , Mexico , Pigmentation
7.
Environ Sci Pollut Res Int ; 27(23): 28480-28489, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31832947

ABSTRACT

Valle del Mayo is an important agricultural area at the northwest of Mexico where up to 20,000 L of a mix composed of glyphosate and tordon is used in drains and canals. This study was carried out in order to evaluate the cellular damage caused by glyphosate, aminomethylphosphonic acid (AMPA), and picloram in agricultural workers. Biomonitoring was performed through the quantification of herbicides in urine using HPLC (high-performance liquid chromatography) to then evaluate the cellular damage in exposed people by means of an evaluation of micronuclei and cellular proliferation in lymphocyte cultures. The urine samples (n = 30) have shown a concentration of up to 10.25 µg/L of picloram and 2.23 µg/L of AMPA; no positive samples for glyphosate were reported. The calculation of the external dose reveals that agricultural workers ingest up to 146 mg/kg/day; however, this concentration does not surpass the limits that are allowed internationally. As for the results for the micronuclei test, 53% of the workers showed cellular damage, and the nuclear division index test reported that there was a significant difference (P < 0.05) between the exposed and the control population, which indicated that the exposure time to pesticides in the people of Valle del Mayo can induce alterations which can cause chronic damage.


Subject(s)
Farmers , Herbicides/analysis , Biological Monitoring , Environmental Monitoring , Humans , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...