Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37374729

ABSTRACT

A regulator based on a converter with step-down/up characteristics is discussed in this paper, which is suitable for processing energy from a lithium-ion battery pack, where the voltage fluctuates from above or below the nominal value. However, this regulator can also be used for applications such as unregulated line rectifiers and renewable energy sources, among others. The converter consists of a non-cascaded interconnection of boost and buck-boost converters such that part of the input energy is transferred directly to the output without reprocessing. Furthermore, it has a non-pulsating input current and a non-inverting output voltage, making it easier to feed the power to other devices. For control purposes, non-linear and linear converter models are derived. The transfer functions of the linear model are used to implement the regulator using a current-mode control scheme. Finally, experimental results for a nominal output voltage of 48 V at 500 W are obtained for the converter in open-loop and closed-loop tests.

2.
Micromachines (Basel) ; 12(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199196

ABSTRACT

In this paper, a high step-up boost converter with a non-isolated configuration is proposed. This configuration has a quadratic voltage gain, suitable for processing energy from alternative sources. It consists of two boost converters, including a transfer capacitor connected in a non-series power transfer structure between input and output. High power efficiencies are achieved with this arrangement. Additionally, the converter has a common ground and non-pulsating input current. Design conditions and power efficiency analysis are developed. Bilinear and linear models are derived for control purposes. Experimental verification with a laboratory prototype of 500 W is provided. The proposed configuration and similar quadratic configurations are compared experimentally using the same number of components to demonstrate the power efficiency improvement. The resulting power efficiency of the prototype was above 95% at nominal load.

SELECTION OF CITATIONS
SEARCH DETAIL
...