Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(8): 087602, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477424

ABSTRACT

Using density functional theory combined with an evolutionary algorithm, we investigate ferroelectricity in substoichiometric HfO_{2-δ} with fixed composition δ=0.25. We find that oxygen vacancies tend to cluster in the form of two-dimensional extended defects, revealing several patterns of local relative arrangements within an energy range of 100 meV per Hf atom. Two lowest-energy patterns result in polar monoclinic structures with different transformation properties. The lowest one elastically transforms to the ferroelectric orthorhombic structure via a shear deformation, overcoming an energy barrier, which is more than twice lower than in the stoichiometric hafnia. The second-lowest structure transforms at smaller volumes to a nonpolar tetragonal one. We discuss the experimentally observed wake-up effect, fatigue, and imprint in HfO_{2}-based ferroelectrics in terms of different local ordering of oxygen-vacancy extended defects, which favor specific crystallographic phases.

2.
Adv Mater ; 33(4): e2004132, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33263190

ABSTRACT

The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.

3.
Faraday Discuss ; 213(0): 321-337, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30361735

ABSTRACT

We present phase diagrams of binary oxides, Hf-O, Zr-O and Y-O, obtained by ab initio evolutionary simulations, in order to explore possible metastable crystalline suboxide structures which could be quenched during the electroforming processes within the conductive filaments in stoichiometric HfO2, ZrO2 and Y2O3 host materials, in resistive switching devices. We find that, in the range MO-MO2 (where M = Hf, Zr, Y), the most energetically favourable atomic configurations have properties which facilitate the ionic conduction of oxygen. Namely, the calculations reveal that oxygen vacancies tend to order in arrays of one-dimensional channels, along which the migration barrier of anions is much lower than for the stoichiometric hosts. We explore for Hf-O and Zr-O a new set of structural patterns, different from those of the host materials, for which a change of oxygen stoichiometry does not change the underlying structural frame. However, a sufficient change of oxygen stoichiometry drives metallic conductivity in oxygen-deficient compounds, whereas their oxygen-rich counterparts are insulating. In contrast to Hf-O and Zr-O, in the Y-O system we find an atomic structure with metallic conductivity, which has the same structural frame as the stoichiometric Y2O3 host. We believe that this property enables the forming-free resistive switching in Y2O3.

4.
J Am Chem Soc ; 139(12): 4574-4581, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28240901

ABSTRACT

Perovskite PbCoO3 synthesized at 12 GPa was found to have an unusual charge distribution of Pb2+Pb4+3Co2+2Co3+2O12 with charge orderings in both the A and B sites of perovskite ABO3. Comprehensive studies using density functional theory (DFT) calculation, electron diffraction (ED), synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), hard X-ray photoemission spectroscopy (HAXPES), soft X-ray absorption spectroscopy (XAS), and measurements of specific heat as well as magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to Pb2+Pb4+3Co2+2Co3+2O12 quadruple perovskite structure. It is shown that the average valence distribution of Pb3.5+Co2.5+O3 between Pb3+Cr3+O3 and Pb4+Ni2+O3 can be stabilized by tuning the energy levels of Pb 6s and transition metal 3d orbitals.

5.
Nature ; 533(7601): 38-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27096367
6.
J Am Chem Soc ; 137(39): 12719-28, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26374486

ABSTRACT

A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. We report that the charge glass state is realized in a perovskite compound PbCrO3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO3 has a valence state of Pb(2+)(0.5)Pb(4+)(0.5)Cr(3+)O3 with Pb(2+)-Pb(4+) correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pb-Cr charge transfer causes an insulator to metal transition and ∼10% volume collapse.

7.
Phys Rev Lett ; 111(7): 077601, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23992082

ABSTRACT

Using density functional theory calculations, ultrathin films of SrVO3(d1) and SrCrO3(d2) on SrTiO3 substrates have been studied as possible multiferroics. Although both are metallic in the bulk limit, they are found to be insulating as a result of orbital ordering driven by lattice distortions at the ultrathin limit. While the distortions in SrVO3 have a first-order Jahn-Teller origin, those in SrCrO3 are ferroelectric in nature. This route to ferroelectricity results in polarizations comparable with conventional ferroelectrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...