Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 10(10): 3022-38, 2014.
Article in English | MEDLINE | ID: mdl-25483693

ABSTRACT

Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.


Subject(s)
Avidin/immunology , Bacterial Proteins/immunology , HSP70 Heat-Shock Proteins/immunology , Lassa Fever/immunology , Lassa Fever/prevention & control , Viral Vaccines/immunology , Animals , Avidin/therapeutic use , Bacterial Proteins/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Communicable Diseases, Emerging/prevention & control , Female , HLA-DR3 Antigen/genetics , HSP70 Heat-Shock Proteins/therapeutic use , Influenza A Virus, H1N1 Subtype/immunology , Interferon-gamma/immunology , Lassa virus/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mycobacterium tuberculosis/immunology , Ovalbumin/immunology , Protein Engineering , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Viral Vaccines/therapeutic use
2.
AIDS Res Hum Retroviruses ; 26(3): 253-64, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20334562

ABSTRACT

Little is known regarding the likelihood of recombination between any given pair of nonidentical HIV-1 viruses in vivo. The present study analyzes the HIV-1 quasispecies in the C1C2 region of env, the vif-vpr-vpu accessory gene region, and the reverse transcriptase region of pol. These sequences were amplified from samples obtained sequentially over a 12- to 33-month period from five dually HIV-1-infected subjects. Analysis of an average of 248 clones amplified from each subject revealed no recombinants within the three loci studied of the subtype-discordant infecting strains, whose genetic diversity was >11% in env. In contrast, two subjects who were initially coinfected by two subtype-concordant variants with genetic diversity of 7.4% in env were found to harbor 10 unique recombinants of these strains, as exhibited by analysis of the env gene. The frequent recombination observed among the subtype-concordant strains studied herein correlates with prior sequence analyses that have commonly found higher rates of recombination at loci bearing the most conserved sequences, demonstrating an important role for sequence identity in HIV-1 recombination. Viral load analysis revealed that the samples studied contained an average of 8125 virus copies/ml (range, 882-31,626 copies/ml), signifying that the amount of viral RNA in the samples was not limiting for studying virus diversity. These data reveal that recombination between genetically distant strains may not be an immediate or common outcome to dual infection in vivo and suggest critical roles for viral and host factors such as viral fitness, virus diversity, and host immune responses that may contribute to limiting the frequency of intersubtype recombination during in vivo dual infection.


Subject(s)
Genetic Variation , HIV Infections/virology , HIV-1/genetics , Recombination, Genetic , Adult , Cameroon , Female , Human Immunodeficiency Virus Proteins/analysis , Human Immunodeficiency Virus Proteins/genetics , Humans , Male , Phylogeny , RNA, Viral/analysis , RNA, Viral/genetics , Sequence Analysis, RNA , Sequence Homology , Species Specificity , Time Factors , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...