Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 4892(1): zootaxa.4892.1.1, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33311101

ABSTRACT

Morocco is a well known hot-spot of biodiversity in the Mediterranean basin. While some taxa like vascular plants are relatively well recorded, important groups of pollinators like bees are still understudied. This article presents an updated checklist of the bee species of Morocco and includes a summary of global and regional distribution of each species. A total of 961 species belonging to six bee families and 68 genera are recorded: Andrenidae (8 genera, 217 species); Apidae (15 genera, 241 species); Colletidae (2 genera, 74 species), Halictidae (12 genera, 144 species), Megachilidae (28 genera, 271 species) and Melittidae (3 genera, 14 species). Among them, 67 species are recorded for the first time in Morocco. Around 70% of the bee fauna of Morocco consists of widespread Palaearctic species. Only 18% of Moroccan species recorded are restricted to North Africa and 8% are Moroccan single-country endemics (81 species). Afrotropical elements in the Moroccan fauna are few, with only 3% of Morocco species co-occuring in that region. This checklist is intended to stimulate new regional research on bees including their taxonomy and biogeography. As many groups of bees have been understudied, discovery of new species for science and new records for the country can be expected. Additional research including inventorying, monitoring, and integrative taxonomic studies are needed to develop a comprehensive strategy for bee conservation in Morocco.


Subject(s)
Bees , Hymenoptera , Animals , Base Sequence , Hymenoptera/genetics , Morocco
2.
Zookeys ; 974: 31-92, 2020.
Article in English | MEDLINE | ID: mdl-33110378

ABSTRACT

Morocco has a diverse bee fauna, but one that has also been relatively understudied in recent years. Here a revision of the species-rich genus Andrena is presented that reveals eleven new species for science and substantially improves our understanding of North African Andrena. From Morocco, Andrena (Aciandrena) semiadesus Wood, sp. nov., Andrena (Aciandrena) triangulivalvis Wood sp. nov., Andrena (Campylogaster) sparsipunctata Wood sp. nov., Andrena (Carandrena) hebescens Wood sp. nov., Andrena (Cnemidandrena) niveofacies Wood sp. nov., Andrena (incertae sedis) tenebricorpus Wood sp. nov., Andrena (Notandrena) acutidentis Wood sp. nov., Andrena (Poliandrena) breviceps Wood sp. nov., and Andrena (Poliandrena) farinosoides Wood sp. nov. are described and their ecology is discussed. Andrena (Aciandrena) astrella Warncke, 1975 is synonymised with Andrena (Aciandrena) fulica Warncke, 1974 syn. nov. The unknown female of Andrena (Nobandrena) ounifa Warncke, 1974, and the unknown male of Andrena (Poliandrena) guichardi Warncke, 1980 are described. Andrena (incertae sedis) gafsensis Wood sp. nov. from Tunisia is described due to its similarity to Andrena tenebricorpus. Andrena (Poecilandrena) nigriclypeus Wood sp. nov. from Algeria is also described as it was collected within 10 km of the Moroccan border. A further 18 species are recorded in Morocco for the first time. Andrena (Melandrena) nitida (Müller, 1776) and Andrena (Notandrena) nitidiuscula Schenck, 1853 are removed from the Moroccan list due to historic problems in the application of these names to Mediterranean taxa.

3.
Proc Natl Acad Sci U S A ; 116(24): 11857-11865, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31043564

ABSTRACT

Natural phenotypic radiations, with their high diversity and convergence, are well-suited for informing how genomic changes translate to natural phenotypic variation. New genomic tools enable discovery in such traditionally nonmodel systems. Here, we characterize the genomic basis of color pattern variation in bumble bees (Hymenoptera, Apidae, Bombus), a group that has undergone extensive convergence of setal color patterns as a result of Müllerian mimicry. In western North America, multiple species converge on local mimicry patterns through parallel shifts of midabdominal segments from red to black. Using genome-wide association, we establish that a cis-regulatory locus between the abdominal fate-determining Hox genes, abd-A and Abd-B, controls the red-black color switch in a western species, Bombus melanopygus Gene expression analysis reveals distinct shifts in Abd-B aligned with the duration of setal pigmentation at the pupal-adult transition. This results in atypical anterior Abd-B expression, a late developmental homeotic shift. Changing expression of Hox genes can have widespread effects, given their important role across segmental phenotypes; however, the late timing reduces this pleiotropy, making Hox genes suitable targets. Analysis of this locus across mimics and relatives reveals that other species follow independent genetic routes to obtain the same phenotypes.


Subject(s)
Bees/genetics , Pigmentation/genetics , Animals , Color , Genome-Wide Association Study/methods , Homeodomain Proteins/genetics , North America , Phenotype , Species Specificity
4.
J Chem Ecol ; 44(9): 838-850, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29785629

ABSTRACT

In eusocial insects, the high cost of altruistic cooperation between colony members has favoured the evolution of cheaters that exploit social services of other species. In the most extreme forms of insect social parasitism, which has evolved multiple times across most social lineages, obligately parasitic species invade the nests of social species and manipulate the workforce of their hosts to rear their own reproductive offspring. As alien species that have lost their own sociality, these social parasites still face social challenges to infiltrate and control their hosts, thus providing independent replicates for understanding the mechanisms essential to social dominance. This review compares socially parasitic insect lineages to find general trends and build a hypothetical framework for the means by which social parasites achieve reproductive dominance. It highlights how host social organization and social parasite life history traits may impact the way they achieve reproductive supremacy, including the potential role of chemical cues. The review discusses the coevolutionary dynamics between host and parasite during this process. Altogether, this review emphasizes the value of social parasites for understanding social evolution and the need for future research in this area.


Subject(s)
Insecta/physiology , Parasites/physiology , Reproduction , Animals , Behavior, Animal/drug effects , Female , Host-Parasite Interactions/drug effects , Pheromones/chemistry , Pheromones/pharmacology
5.
Insect Sci ; 25(1): 75-86, 2018 Feb.
Article in English | MEDLINE | ID: mdl-27696706

ABSTRACT

Social parasitic Hymenopterans have evolved morphological, chemical, and behavioral adaptations to overcome the sophisticated recognition and defense systems of their social host to invade host nests and exploit their worker force. In bumblebees, social parasitism appeared in at least 3 subgenera independently: in the subgenus Psithyrus consisting entirely of parasitic species, in the subgenus Alpinobombus with Bombus hyperboreus, and in the subgenus Thoracobombus with B. inexspectatus. Cuckoo bumblebee males utilize species-specific cephalic labial gland secretions for mating purposes that can impact their inquiline strategy. We performed cephalic labial gland secretions in B. hyperboreus, B. inexspectatus and their hosts. Males of both parasitic species exhibited high species specific levels of cephalic gland secretions, including different main compounds. Our results showed no chemical mimicry in the cephalic gland secretions between inquilines and their host and we did not identify the repellent compounds already known in other cuckoo bumblebees.


Subject(s)
Animal Communication , Bees/chemistry , Exocrine Glands/metabolism , Social Behavior , Animals , Female , Male
6.
Infect Genet Evol ; 23: 129-37, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24530902

ABSTRACT

Selection, as a major driver for evolution in host-parasite interactions, may act on two levels; the virulence of the pathogen, and the hosts' defence system. Effectors of the host defence system might evolve faster than other genes e.g. those involved in adaptation to changes in life history or environmental fluctuations. Host-parasite interactions at the level of hosts and their specific social parasites, present a special setting for evolutionarily driven selection, as both share the same environmental conditions and pathogen pressures. Here, we study the evolution of antimicrobial peptide (AMP) genes, in six host bumblebee and their socially parasitic cuckoo bumblebee species. The selected AMP genes evolved much faster than non-immune genes, but only defensin-1 showed significant differences between host and social parasite. Nucleotide diversity and codon-by-codon analyses confirmed that purifying selection is the main selective force acting on bumblebee defence genes.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Bees/classification , Bees/genetics , Insect Proteins/genetics , Animals , Bees/parasitology , Evolution, Molecular , Host-Parasite Interactions , Male , Phylogeny , Selection, Genetic
7.
BMC Evol Biol ; 13: 263, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24295171

ABSTRACT

BACKGROUND: The Pleistocene climatic oscillations are considered as a major driving force of intraspecific divergence and speciation. During Ice Ages, populations isolated in allopatric glacial refugia can experience differentiation in reproductive traits through divergence in selection regimes. This phenomenon may lead to reproductive isolation and dramatically accentuates the consequences of the climatic oscillations on species. Alternatively, when reproductive isolation is incomplete and populations are expanding again, further mating between the formerly isolated populations can result in the formation of a hybrid zone, genetic introgression or reinforcement speciation through reproductive trait displacements. Therefore changes in reproductive traits driven by population movements during climatic oscillations can act as an important force in promoting pre-zygotic isolation. Notwithstanding, divergence of reproductive traits has not been approached in the context of climatic oscillations. Here we investigate the impact of population movements driven by climatic oscillations on a reproductive trait of a bumblebee species (Bombus lapidarius). We characterise the pattern of variation and differentiation across the species distribution (i) with five genes (nuclear and mitochondrial), and (ii) in the chemical composition of male marking secretions (MMS), a key trait for mate attraction in bumblebees. RESULTS: Our results provide evidence that populations have experienced a genetic allopatric differentiation, in at least three main refugia (the Balkans, Centre-Eastern Europe, and Southern Italy) during Quaternary glaciations. The comparative chemical analyses show that populations from the Southern Italian refugium have experienced MMS differentiation and an incipient speciation process from another refugium. The meeting of Southern Italian populations with other populations as a result of range expansion at a secondary contact zone seems to have led to a reinforcement process on local MMS patterns. CONCLUSIONS: This study suggests that population movement during Quaternary climatic oscillations can lead to divergence in reproductive traits by allopatric differentiation during Ice Ages and by reinforcement during post-glacial recolonization.


Subject(s)
Bees/classification , Bees/physiology , Genetic Speciation , Phylogeography , Animals , Bees/genetics , Europe , Genetic Drift , Genetic Variation , Male , Reproduction , Sequence Analysis, DNA
8.
PLoS One ; 8(6): e65642, 2013.
Article in English | MEDLINE | ID: mdl-23755263

ABSTRACT

Populations on islands often exhibit lower levels of genetic variation and ecomorphological divergence compared to their mainland relatives. While phenotypic differentiation in characters, such as size or shape among insular organisms, has been well studied, insular differentiation in quantitative reproductive traits involved in chemical communication has received very little attention to date. Here, we investigated the impact of insularity on two syntopic bumblebee species pairs: one including species that are phylogenetically related (Bombus terrestris and B. lucorum), and the other including species that interact ecologically (B. terrestris and its specific nest inquiline B. vestalis). For each bumblebee species, we characterized the patterns of variation and differentiation of insular (Corsican) vs. mainland (European) populations (i) with four genes (nuclear and mitochondrial, 3781 bp) and (ii) in the chemical composition of male marking secretions (MMS), a key trait for mate attraction in bumblebees, by gas chromatography-mass spectrometry (GC-MS). Our results provide evidence for genetic differentiation in Corsican bumblebees and show that, contrary to theoretical expectations, island populations of bumblebees exhibit levels of genetic variation similar to the mainland populations. Likewise, our comparative chemical analyses of MMS indicate that Corsican populations of bumblebees are significantly differentiated from the mainland yet they hold comparative levels of within-population MMS variability compared to the mainland. Therefore, insularity has led Corsican populations to diverge both genetically and chemically from their mainland relatives, presumably through genetic drift, but without a decrease of genetic diversity in island populations. We hypothesize that MMS divergence in Corsican bumblebees was driven by a persistent lack of gene flow with mainland populations and reinforced by the preference of Corsican females for sympatric (Corsican) MMS. The impoverished Corsican bumblebee fauna has not led to relaxation of stabilizing selection on MMS but to consistent differentiation chemical reproductive traits on the island.


Subject(s)
Bees/genetics , Animals , Bees/classification , Gas Chromatography-Mass Spectrometry , Genetic Drift , Genetic Variation/physiology , Islands , Phylogeny
9.
PLoS One ; 7(9): e43053, 2012.
Article in English | MEDLINE | ID: mdl-23028441

ABSTRACT

Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host's worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance.


Subject(s)
Aggression , Behavior, Animal , Host-Parasite Interactions , Parasites/physiology , Animals , Bees/physiology , Male , Pheromones
SELECTION OF CITATIONS
SEARCH DETAIL
...