Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36602862

ABSTRACT

Mutations in the human progranulin (GRN) gene are a leading cause of frontotemporal lobar degeneration (FTLD). While previous studies implicate aberrant microglial activation as a disease-driving factor in neurodegeneration in the thalamocortical circuit in Grn-/- mice, the exact mechanism for neurodegeneration in FTLD-GRN remains unclear. By performing comparative single-cell transcriptomics in the thalamus and frontal cortex of Grn-/- mice and patients with FTLD-GRN, we have uncovered a highly conserved astroglial pathology characterized by upregulation of gap junction protein GJA1, water channel AQP4, and lipid-binding protein APOE, and downregulation of glutamate transporter SLC1A2 that promoted profound synaptic degeneration across the two species. This astroglial toxicity could be recapitulated in mouse astrocyte-neuron cocultures and by transplanting induced pluripotent stem cell-derived astrocytes to cortical organoids, where progranulin-deficient astrocytes promoted synaptic degeneration, neuronal stress, and TDP-43 proteinopathy. Together, these results reveal a previously unappreciated astroglial pathology as a potential key mechanism in neurodegeneration in FTLD-GRN.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Animals , Mice , Progranulins/genetics , Frontotemporal Dementia/genetics , Astrocytes/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology
2.
Mol Autism ; 9: 54, 2018.
Article in English | MEDLINE | ID: mdl-30364390

ABSTRACT

Background: Loss of UBE3A causes Angelman syndrome, whereas excess UBE3A activity appears to increase the risk for autism. Despite this powerful association with neurodevelopmental disorders, there is still much to be learned about UBE3A, including its cellular and subcellular organization in the human brain. The issue is important, since UBE3A's localization is integral to its function. Methods: We used light and electron microscopic immunohistochemistry to study the cellular and subcellular distribution of UBE3A in the adult human cerebral cortex. Experiments were performed on multiple tissue sources, but our results focused on optimally preserved material, using surgically resected human temporal cortex of high ultrastructural quality from nine individuals. Results: We demonstrate that UBE3A is expressed in both glutamatergic and GABAergic neurons, and to a lesser extent in glial cells. We find that UBE3A in neurons has a non-uniform subcellular distribution. In somata, UBE3A preferentially concentrates in euchromatin-rich domains within the nucleus. Electron microscopy reveals that labeling concentrates in the head and neck of dendritic spines and is excluded from the PSD. Strongest labeling within the neuropil was found in axon terminals. Conclusions: By highlighting the subcellular compartments in which UBE3A is likely to function in the human neocortex, our data provide insight into the diverse functional capacities of this E3 ligase. These anatomical data may help to elucidate the role of UBE3A in Angelman syndrome and autism spectrum disorder.


Subject(s)
Cerebral Cortex/metabolism , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Angelman Syndrome/metabolism , Cerebral Cortex/ultrastructure , Epilepsy/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Microscopy, Electron , Middle Aged , Neurons/metabolism , Neurons/ultrastructure , Ubiquitin-Protein Ligases/ultrastructure , Young Adult , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...