Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 17(8): 922-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27270400

ABSTRACT

Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1ß that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Familial Mediterranean Fever/metabolism , Inflammasomes/metabolism , Macrophages/physiology , Mutation/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pyrin/genetics , Alkyl and Aryl Transferases/genetics , Animals , Cells, Cultured , Familial Mediterranean Fever/genetics , Humans , Immunity, Innate , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Polyisoprenyl Phosphates/metabolism , Protein Processing, Post-Translational , Signal Transduction , Toll-Like Receptors/metabolism
2.
J Autism Dev Disord ; 41(2): 185-95, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20556501

ABSTRACT

The present study explored the relations among lie-telling ability, false belief understanding, and verbal mental age. We found that children with autism spectrum disorder (ASD), like typically developing children, can and do tell antisocial lies (to conceal a transgression) and white lies (in politeness settings). However, children with ASD were less able than typically developing children to cover up their initial lie; that is, children with ASD had difficulty exercising semantic leakage control--the ability to maintain consistency between their initial lie and subsequent statements. Furthermore, unlike in typically developing children, lie-telling ability in children with ASD was not found to be related to their false belief understanding. Future research should examine the underlying processes by which children with ASD tell lies.


Subject(s)
Child Development Disorders, Pervasive/psychology , Deception , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Psychological Tests
3.
J Biol Chem ; 280(51): 42454-63, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16221665

ABSTRACT

Notch signaling is a component of a wide variety of developmental processes in many organisms. Notch activity can be modulated by O-fucosylation (mediated by protein O-fucosyltransferase-1) and Fringe, a beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose in the context of epidermal growth factor-like (EGF) repeats. Fringe was initially described in Drosophila, and three mammalian homologues have been identified, Manic fringe, Lunatic fringe, and Radical fringe. Here for the first time we have demonstrated that, similar to Manic and Lunatic, Radical fringe is also a fucose-specific beta1,3-N-acetylglucosaminyltransferase. The fact that three Fringe homologues exist in mammals raises the question of whether and how these enzymes differ. Although Notch contains numerous EGF repeats that are predicted to be modified by O-fucose, previous studies in our laboratory have demonstrated that not all O-fucosylated EGF repeats of Notch are further modified by Fringe, suggesting that the Fringe enzymes can differentiate between them. In this work, we have sought to identify specificity determinants for the recognition of an individual O-fucosylated EGF repeat by the Fringe enzymes. We have also sought to determine differences in the biochemical behavior of the Fringes with regard to their in vitro enzymatic activities. Using both in vivo and in vitro experiments, we have found two amino acids that appear to be important for the recognition of an O-fucosylated EGF repeat by all three mammalian Fringes. These amino acids provide an initial step toward defining sequences that will allow us to predict which O-fucosylated EGF repeats are modified by the Fringes.


Subject(s)
Epidermal Growth Factor/metabolism , Fucose/metabolism , Glycosyltransferases/metabolism , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Glycosyltransferases/chemistry , Molecular Sequence Data , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...