Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Innovation (Camb) ; 5(4): 100640, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881800

ABSTRACT

Self-sensing adaptability is a high-level intelligence in living creatures and is highly desired for their biomimetic soft robots for efficient interaction with the surroundings. Self-sensing adaptability can be achieved in soft robots by the integration of sensors and actuators. However, current strategies simply assemble discrete sensors and actuators into one robotic system and, thus, dilute their synergistic and complementary connections, causing low-level adaptability and poor decision-making capability. Here, inspired by vertebrate animals supported by highly evolved backbones, we propose a concept of a bionic spine that integrates sensing and actuation into one shared body based on the reversible piezoelectric effect and a decoupling mechanism to extract the environmental feedback. We demonstrate that the soft robots equipped with the bionic spines feature locomotion speed improvements between 39.5% and 80% for various environmental terrains. More importantly, it can also enable the robots to accurately recognize and actively adapt to changing environments with obstacle avoidance capability by learning-based gait adjustments. We envision that the proposed bionic spine could serve as a building block for locomotive soft robots toward more intelligent machine-environment interactions in the future.

2.
Bioresour Technol ; 404: 130913, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821426

ABSTRACT

This work proposes an advanced biochar material (ß-CD@SiBC) for controllable transformation of specific silicon (Si) forms through endogenous Si activation and functional group introduction for efficient cadmium (Cd) immobilization and removal. The maximum adsorption capacity of ß-CD@SiBC for Cd(II) reached 137.6 mg g-1 with a remarkable removal efficiency of 99 % for 200 mg L-1Cd(II). Moreover, the developed ß-CD@SiBC flow column exhibited excellent performance at the environmental Cd concentration, with the final concentration meeting the environmental standard for surface water quality (0.05 mg L-1). The remediation mechanism of ß-CD@SiBC could be mainly attributed to mineral precipitation and ion exchange, which accounted for 42 % and 29 % of the remediation effect, respectively, while functional group introduction enhanced its binding stability with Cd. Overall, this work proposes the role and principle of transformation of Si forms within biochar, providing new strategies for better utilizing endogenous components in biomass.


Subject(s)
Cadmium , Charcoal , Silicon , Water Pollutants, Chemical , Cadmium/chemistry , Charcoal/chemistry , Silicon/chemistry , Adsorption , Water Purification/methods , Environmental Restoration and Remediation/methods
3.
IEEE J Biomed Health Inform ; 28(6): 3446-3456, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38502614

ABSTRACT

Epilepsy, a chronic neuropsychiatric brain disorder characterized with recurrent seizures, is closely associated with abnormal neural communications within the brain. Despite that the phase-amplitude coupling (PAC) has been suggested to offer a new way to observe neural interactions during epilepsy, however, few studies pay attention to alterations of the epileptic functional brain network based on PAC, especially on the [Formula: see text] PAC. Therefore, we use scalp electroencephalography (EEG) data of epileptic patients and the [Formula: see text] PAC modulation index (MI) to construct functional brain networks to examine variations of neural interactions during different epileptic phases. Statistically, the findings show that between-channel MI values in the post-ictal period significantly increase compared to that in the pre-ictal period, and the between-channel MI value has a close association with the information of phase and amplitude provided by the channels. Importantly, in both the phase-amplitude and amplitude-phase functional brain networks, the average node degree is remarkably higher in the post-ictal period than that in the pre-ictal period, whereas the characteristic path length in the ictal and post-ictal periods is significantly lower than that in the pre-ictal period. Besides, the average betweenness centrality in the post-ictal period is remarkably higher than that in the ictal period. Interestingly, the positive correlations between within-channel MI values and between-channel MI values can be observed during the pre-ictal, ictal and post-ictal periods. These findings suggest that the [Formula: see text] PAC-based functional brain network may provide a novel perspective to understanding alterations of neural interactions during the epileptic evolution, and may contribute to effectively controlling the spread of epileptic seizures.


Subject(s)
Brain , Electroencephalography , Epilepsy , Signal Processing, Computer-Assisted , Humans , Electroencephalography/methods , Epilepsy/physiopathology , Brain/physiopathology , Adult , Male , Female , Young Adult , Adolescent , Nerve Net/physiopathology , Middle Aged , Child
4.
Bioresour Technol ; 386: 129515, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37468011

ABSTRACT

In this study, a series of biochar products with different active functional groups were developed by one-pot coprecipitation method, including magnesium-modified biochar (MgBC) and functional group-grafted MgBC (Cys@MgBC, Try@MgBC, and Glu@MgBC), for effective adsorption of cadmium (Cd(II)) from wastewaters. These biochars exhibited excellent removal performance for Cd(II), particularly Cys@MgBC, whose maximum Cd(II) adsorption capacity reached 223.7 mg g-1. The highly active and weakly crystalline Mg could adsorb Cd(II) through precipitation and ion exchange, which was further promoted by the introduced functional groups through complexation and precipitation. After 120 d of natural process, the immobilization efficiency of Cd(II) by Cys@MgBC, Try@MgBC, and Glu@MgBC was still maintained at 98.7%, 95.2%, and 82.7% respectively. This study proposes and clarifies the complexation mechanism of functional group-grafted Mg-modified biochar for heavy metals, providing new insights into the practical application of these biochars.


Subject(s)
Cadmium , Wastewater , Cadmium/chemistry , Magnesium , Charcoal/chemistry , Adsorption
5.
Environ Pollut ; 310: 119869, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35926734

ABSTRACT

In general, the remediation performance of heavy metals can be further improved by metal-oxide modified biochar. This work used MgO-modified rice husk biochar (MgO-5%@RHB-450 and MgO-5%@RHB-600) with high surface activity for simultaneous remediation and removal of heavy metals in soil and wastewater. The adsorption of MgO-5%@RHB-450/MgO-5%@RHB-600 for Cd(II), Cu(II), Zn(II) and Cr(VI) followed the pseudo-second order, with the adsorption capacities reaching 91.13/104.68, 166.68/173.22, 80.12/104.38 and 38.88/47.02 mg g-1, respectively. The addition of 1.0% MgO-5%@RHB-450 and MgO-5%@RHB-600 could effectively decrease the CaCl2-extractable Cd concentration (CaCl2-Cd) by 66.2% and 70.0%, respectively. Moreover, MgO-5%@RHB-450 and MgO-5%@RHB-600 facilitated the transformation of exchangeable fractions to carbonate-bound and residual fractions, and reduced the exchangeable fractions by 8.1% and 9.6%, respectively. The mechanisms for the removal of heavy metals from wastewater by MgO-5%@RHB-450 and MgO-5%@RHB-600 mainly included complexation, ion exchange and precipitation, and the immobilization mechanisms in soil may be precipitation, complexation and pore filling. In general, this study provides high-efficiency functional materials for the remediation of heavy metal pollution.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Adsorption , Biomass , Cadmium , Calcium Chloride , Charcoal , Magnesium Oxide , Soil , Wastewater
6.
Environ Sci Pollut Res Int ; 29(47): 71583-71592, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35604606

ABSTRACT

In polluted waters, arsenic (As) poses substantial risks to the environment and human health. Inorganic As mainly exists as As(V) and As(III), and As(III) usually shows higher mobility and toxicity and is more difficult to be removed by coagulation. The oxidation of coexisting Fe(II) can accelerate As(III) oxidation and removal by promoting the generation of reactive intermediates and Fe(III) coagulant in the presence of dissolved oxygen. However, the removal efficiency of As from acidic wastewaters is far from satisfactory due to the low Fe(II) oxidation rate by dissolved oxygen. Herein, UV irradiation was applied to stimulate the synergistic oxidation of Fe(II)/As(III), and the effects of coexisting Fe(II) concentration and pH were also evaluated. The synergistic oxidation of Fe(II)/As(III) significantly enhanced the removal of As from acidic waters. Under UV irradiation, Fe(II) significantly promoted the generation of reactive oxygen species (ROS), thereby facilitating As(III) oxidation. In addition, the formation of ferric arsenate and amorphous ferric (hydr)oxides contributed much to As removal. In the As(III)-containing solution with 200 µmol L-1 Fe(II) at initial pH 4.0, the total arsenic (As(T)) concentration decreased from 67.0 to 1.3 and 0.5 µmol L-1, respectively, at 25 and 120 min under UV irradiation. The As(T) removal rate increased with increasing Fe(II) concentration, and first increased and then decreased with increasing initial pH from 2.0 to 6.0. This study clarifies the mechanism for the synergistic photo-oxidation of Fe(II)/As(III) under UV irradiation, and proposes a new strategy for highly efficient As(III) removal from acidic industrial and mining wastewaters.


Subject(s)
Arsenic , Arsenates , Ferric Compounds , Ferrous Compounds , Humans , Hydrogen-Ion Concentration , Iron , Oxidation-Reduction , Oxides , Oxygen , Reactive Oxygen Species , Wastewater
7.
Environ Res ; 212(Pt B): 113341, 2022 09.
Article in English | MEDLINE | ID: mdl-35460638

ABSTRACT

Biochar is a low cost, porous and solid material with an extremely high carbon content, various types of functional groups, a large specific surface area and many other desirable characteristics. Thus, it is often used as an adsorbent or a loading matrix. Nano-magnesium oxide is a crystalline material with small particles and strong ion exchangeability. However, due to the high surface chemical energy, it easily forms agglomerates of particles. Therefore, to combine the advantages of biochar and magnesium, metal magnesium nanoparticles can be loaded onto the surface of biochar with different modification techniques, resulting in biochars with low cost and high adsorption performance to be used as an adsorption matrix (collectively referred to as Mg@BC). This review presents the effects of different Mg@BC preparation methods and synthesis conditions and summarizes the removal capabilities and adsorption mechanisms of Mg@BC for different types of pollutants in water. In addition, the review proposes the prospects for the development of Mg@BC to solve various problems in the future.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Kinetics , Magnesium , Magnesium Oxide/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis
8.
J Environ Manage ; 301: 113921, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34731946

ABSTRACT

Biochar has been widely applied as an adsorbent, whose electrochemical capacity and heavy metal adsorption performance can be improved by nitrogen doping. In this work, nitrogen-doped biochar (NBC) was synthesized by calcinating sodium humate with sodium bicarbonate (NaHCO3) and urea as the activation agent and nitrogen source, respectively. The NBC was then used to electrochemically adsorb Cd(II) and As(III,V) from simulated and actual wastewaters, respectively. The results indicated that NaHCO3 activation and nitrogen doping could increase the surface area and nitrogen content of the biochar, contributing to the enhancement of adsorption performance for Cd(II) and As(III,V). The electrosorption capacities for Cd(II) and total arsenic (As(T)) increased first and then reached equilibrium with increasing nitrogen content, increased first and then decreased with increasing calcination temperature, and consistently increased with increasing voltage. The Cd(II) electrosorption capacity (79.0 mg g-1) and As(T) removal ratio (94.0%) at 1.2 V in actual As-contaminated wastewater (1.16 mg L-1) were about 4 and 2.6 folds of their inorganic adsorption capacities, respectively. After five cycles of reuse, the Cd(II) and As(T) removal ratio could be maintained at 65.8% and 51.7% of the initial electrosorption capacity. This work expands the application of NBC for heavy metal removal.


Subject(s)
Arsenic , Water Pollutants, Chemical , Adsorption , Cadmium , Charcoal , Nitrogen , Wastewater
9.
Bioresour Technol ; 347: 126425, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838973

ABSTRACT

This study reports a MgAl-LDH rice husk biochar composite (MgAl-LDH@RHB) with a regular hydrotalcite structure synthesized by a simple hydrothermal method, which was then used to remove Cd(II) and Cu(II) from water. The influencing factors on the adsorption performance were determined through batch adsorption experiments, and the adsorption characteristics and cycling capacity were evaluated with eight models and adsorption-desorption experiments. The results showed that the adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB conformed to the Langmuir-Freundlich model and PSO kinetics model, indicating single-layer chemical adsorption. In addition, the experimental maximum adsorption capacities for Cd(II) and Cu(II) were 125.34 and 104.34 mg g-1, respectively. The adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB was dominated by surface precipitation and ion exchange. The findings reveal the mechanism for the heavy metal removal by MgAl-LDH@RHB and provide a theoretical reference for agricultural waste disposal and water pollution control.


Subject(s)
Metals, Heavy , Oryza , Water Pollutants, Chemical , Adsorption , Charcoal , Hydroxides , Kinetics , Wastewater , Water Pollutants, Chemical/analysis
10.
ACS Omega ; 6(11): 7402-7412, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778253

ABSTRACT

Zn-Al layered bimetallic composites were prepared by ethanol strengthening and co-precipitation using banana straw as a raw material. A high-efficiency phosphorus adsorbent (ZnAl-LDO-BC) was obtained by calcination at a high temperature. The kinetics and thermodynamics of phosphorus adsorption on ZnAl-LDO-BC were then studied. The results showed that the adsorption process of ZnAl-LDO-BC corresponds with the pseudo-second-order (PSO) kinetic equation and the Langmuir model. The theoretical maximum adsorption capacity of ZnAl-LDO-BC is 111.11 mg/g (at 45 °C, 500 mg/L phosphorus initial concentration). The influence of anions on phosphorus adsorption decreased in strength in the following order: CO3 2- > SO4 2- > NO3 -. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) were used to characterize the adsorption of phosphorus on ZnAl-LDO-BC and showed that ZnAl-LDO-BC can efficiently adsorb phosphorus. The adsorption mechanism utilizes both O-H and C-H on the surface of ZnAl-LDO-BC for the adsorption of PO4 3-, forming Zn3(PO4)2·4H2O via complexation precipitation; additionally, biochar surface adsorption and interlayer adsorption are indispensable forms of phosphate adsorption. With the systematic study of phosphorus adsorption by ZnAl-LDO-BC, a novel green technology was developed for addressing phosphorus pollution.

11.
Water Sci Technol ; 82(12): 2962-2974, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33341785

ABSTRACT

Low-cost banana stalk (Musa nana Lour.) biochar was prepared using oxygen-limited pyrolysis (at 500 °C and used), to remove heavy metal ions (including Zn(II), Mn(II) and Cu(II)) from aqueous solution. Adsorption experiments showed that the initial solution pH affected the ability of the biochar to adsorb heavy metal ions in single- and polymetal systems. Compared to Mn(II) and Zn(II), the biochar exhibited highly selective Cu(II) adsorption. The adsorption kinetics of all three metal ions followed the pseudo-second-order kinetic equation. The isotherm data demonstrated the Langmuir model fit for Zn(II), Mn(II) and Cu(II). The results showed that the chemical adsorption of single molecules was the main heavy metal removal mechanism. The maximum adsorption capacities (mg·g-1) were ranked as Cu(II) (134.88) > Mn(II) (109.10) > Zn(II) (108.10)) by the single-metal adsorption isotherms at 298 K. Moreover, characterization analysis was performed using Fourier transform infrared spectroscopy, the Brunauer-Emmett-Teller method, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed that ion exchange was likely crucial in Mn(II) and Zn(II) removal, while C-O, O-H and C = O possibly were key to Cu(II) removal by complexing or other reactions.


Subject(s)
Musa , Water Pollutants, Chemical , Adsorption , Charcoal , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Zinc/analysis
12.
ACS Omega ; 5(25): 15152-15161, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637788

ABSTRACT

An imidazole ester skeleton (zeolitic imidazolate framework (ZIF)) was grown on the surface of a ZnAl-layered double hydroxide (ZnAl-LDH) material to form a porous composite (ZIF-ZnAl-LDH). To understand the adsorption characteristics of the two materials, the effects of pH, adsorption time, and adsorption concentration on the adsorption of Congo red (CR) solution were investigated comprehensively. In addition, ZnAl-LDH and ZIF-ZnAl-LDH were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The results clearly showed that ZnAl-LDH had a lamellar structure with a diameter of approximately 200-500 nm and ZIF-ZnAl-LDH had a regular three-dimensional hexagonal structure. The kinetics and thermodynamics of the CR adsorption by ZnAl-LDH and ZIF-ZnAl-LDH can be described using pseudo-second-order (PSO) and Langmuir models, respectively. The highest value of adsorption capacity obtained from the Langmuir equation was equal to 625.00 and 909.09 mg/g for these two compounds, respectively. The values of the standard Gibbs free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) obtained for these adsorption processes prove that the adsorption of CR by ZnAl-LDH and ZIF-ZnAl-LDH is a spontaneous endothermic process. Furthermore, through the analysis of the characterization results, it is concluded that the adsorption mechanisms of ZnAl-LDH and ZIF-ZnAl-LDH on CR are mainly dominated by electrostatic action, functional group action, surface pore adsorption, and anion exchange.

13.
Materials (Basel) ; 13(4)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093263

ABSTRACT

Biochars were produced with magnesium chloride as an additive for the sorption of hexavalent chromium dissolved in water using five types of straw (from taro, corn, cassava, Chinese fir, and banana) and one type of shell (Camellia oleifera) as the raw materials. The removal of hexavalent chromium by the six biochars mainly occurred within 60 min and then gradually stabilized. The kinetics of the adsorption process were second order, the Langmuir model was followed, and the adsorption of Cr(VI) by the six biochars was characterized by Langmuir monolayer chemisorption on a heterogeneous surface. Banana straw biochar (BSB) had the best performance, which perhaps benefitted from its special structure and best adsorption effect on Cr(VI), and the theoretical adsorption capacity was calculated as 125.00 mg/g. For the mechanism analysis, Mg-loaded biochars were characterized before and after adsorption by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS). The adsorption mechanism differed from the adsorption process of conventional magnetic biochar, and biochar interactions with Cr(VI) were controlled mainly by electrostatic attraction, complexation, and functional group bonding. In summary, the six Mg-loaded biochars exhibit great potential advantages in removing Cr(VI) from wastewater and have promising potential for practical use, especially BSB, which shows super-high adsorption performance.

14.
Environ Sci Pollut Res Int ; 26(18): 18343-18353, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31044376

ABSTRACT

ZnAl-layered double hydroxide-loaded banana straw biochar (ZnAl-LDH-BSB) was prepared via the hydrothermal method, and the efficient phosphorus removal agent ZnAl-LDO-BSB was obtained by calcination at 500 °C. Based on the ZnAl-LDO-BSB adsorption characteristics, the adsorption mechanism was evaluated via TG/DTA, FTIR, XRD, SEM, HRTEM, and other characterization methods. The results showed that the ZnAl-LDO-BSB assembled into microspheres with typical hexagonal lamellar structures and presented good thermal stability. The adsorption of total phosphate (TP) by ZnAl-LDO-BSB conforms to the Langmuir model, and the theoretical maximum adsorption capacity is 185.19 mg g-1. The adsorption kinetics were in accordance with the second-order kinetic model, and the anion influence on TP adsorption followed the order CO32- > SO42- > NO3-. The combination of zeta potential measurements with the FTIR, XRD, SEM, HRTEM, and XPS results suggested that ZnAl-LDO-BSB adsorbs TP mainly by electrostatic adsorption, surface coordination, and anion intercalation. Graphical abstract.


Subject(s)
Aluminum/chemistry , Charcoal , Musa , Phosphates/chemistry , Wastewater/chemistry , Water Purification/methods , Zinc/chemistry , Adsorption , Hydroxides/chemistry , Kinetics , Phosphates/isolation & purification
15.
Bioresour Technol ; 276: 183-189, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30623874

ABSTRACT

Herein, biochars from 6 different feedstocks (taro straw, corn straw, cassava straw, Chinese fir straw, banana straw, and Camellia oleifera shell) were produced using magnesium chloride (MgCl2) as a modifier due to their sorption behavior toward NH4+-N and phosphorus in an aqueous solution. The biochar characteristics were evaluated, including pH, pHPZC, biochar magnesium content, and total pore volume (PVtot). The experimental results in terms of the kinetics and equilibrium isotherms showed that the cassava straw and banana straw biochars exhibited the theoretical maximum saturated adsorption capacities of 24.04 mg·g-1 (NH4+-N) and 31.15 mg·g-1 (TP), respectively. Biochar produced from these feedstocks had higher magnesium contents and greater total pore volumes, reflecting the significant contributions from magnesium and steric effects. FTIR, XRD, and SEM/EDS analyses demonstrated that NH4+-N and TP sorption mechanisms predominantly involved surface electrostatic attraction, Mg2+ precipitates and complexation with surface hydroxyl functional groups.


Subject(s)
Charcoal/chemistry , Magnesium/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...