Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 9(2): 248-253, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38091005

ABSTRACT

The advent of monochromated electron energy-loss spectroscopy has enabled atomic-resolution vibrational spectroscopy, which triggered interest in spatially localized or quasi-localized vibrational modes in materials. Here we report the discovery of phonon vortices at heavy impurities in two-dimensional materials. We use density-functional-theory calculations for two configurations of Si impurities in graphene, Si-C3 and Si-C4, to examine atom-projected phonon densities of states and display the atomic-displacement patterns for select modes that are dominated by impurity displacements. The vortices are driven by large displacements of the impurities, and reflect local symmetries. Similar vortices are found at phosphorus impurities in hexagonal boron nitride, suggesting that they may be a feature of heavy impurities in crystalline materials. Phonon vortices at defects are expected to play a role in thermal conductivity and other properties.

2.
Phys Rev Lett ; 131(18): 186202, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977630

ABSTRACT

Visualization of individual electronic states ascribed to specific unoccupied orbitals at the atomic scale can reveal fundamental information about chemical bonding, but it is challenging since bonding often results in only subtle variations in the whole density of states. Here, we utilize atomic-resolution energy-loss near-edge fine structure (ELNES) spectroscopy to map out the electronic states attributed to specific unoccupied p_{z} orbital around a fourfold coordinated silicon point defect in graphene, which is further supported by theoretical calculations. Our results illustrate the power of atomic-resolution ELNES towards the probing of defect-site-specific electronic orbitals in monolayer crystals, providing insights into understanding the effect of chemical bonding on the local properties of defects in solids.

3.
Angew Chem Int Ed Engl ; 62(41): e202307061, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37608769

ABSTRACT

Carbonate hydrogenation to formate is a promising route to convert captured carbon dioxide into valuable chemicals, thus reducing carbon emissions and creating a revenue return. Developing inexpensive catalysts with high activity, selectivity, and stability remains challenging. We report a supported non-noble metal catalyst, Ni/TiO2 , with great selectivity over 96 % and excellent stability in catalyzing the conversion of carbonate into formate in aqueous solution. Ni0 and Ni2+ species are both observed in Ni/TiO2 catalysts, and the synergistic effect of these two Ni components leads to high activity and high selectivity of carbonate hydrogenation to formate.

5.
Nat Mater ; 22(5): 612-618, 2023 May.
Article in English | MEDLINE | ID: mdl-36928385

ABSTRACT

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.

6.
Nat Commun ; 13(1): 1877, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387994

ABSTRACT

Electrochemical reduction of CO2 to multi-carbon fuels and chemical feedstocks is an appealing approach to mitigate excessive CO2 emissions. However, the reported catalysts always show either a low Faradaic efficiency of the C2+ product or poor long-term stability. Herein, we report a facile and scalable anodic corrosion method to synthesize oxygen-rich ultrathin CuO nanoplate arrays, which form Cu/Cu2O heterogeneous interfaces through self-evolution during electrocatalysis. The catalyst exhibits a high C2H4 Faradaic efficiency of 84.5%, stable electrolysis for ~55 h in a flow cell using a neutral KCl electrolyte, and a full-cell ethylene energy efficiency of 27.6% at 200 mA cm-2 in a membrane electrode assembly electrolyzer. Mechanism analyses reveal that the stable nanostructures, stable Cu/Cu2O interfaces, and enhanced adsorption of the *OCCOH intermediate preserve selective and prolonged C2H4 production. The robust and scalable produced catalyst coupled with mild electrolytic conditions facilitates the practical application of electrochemical CO2 reduction.

7.
J Am Chem Soc ; 143(46): 19417-19424, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34779627

ABSTRACT

Single-atom catalysts (SACs), featuring high atom utilization, have captured widespread interests in diverse applications. However, the single-atom sites in SACs are generally recognized as independent units and the interplay of adjacent sites is largely overlooked. Herein, by the direct pyrolysis of MOFs assembled with Fe and Ni-doped ZnO nanoparticles, a novel Fe1-Ni1-N-C catalyst, with neighboring Fe and Ni single-atom pairs decorated on nitrogen-doped carbon support, has been precisely constructed. Thanks to the synergism of neighboring Fe and Ni single-atom pairs, Fe1-Ni1-N-C presents significantly boosted performances for electrocatalytic reduction of CO2, far surpassing Fe1-N-C and Ni1-N-C with separate Fe or Ni single atoms. Additionally, the Fe1-Ni1-N-C also exhibits superior performance with excellent CO selectivity and durability in Zn-CO2 battery. Theoretical simulations reveal that, in Fe1-Ni1-N-C, single Fe atoms can be highly activated by adjacent single-atom Ni via non-bonding interaction, significantly facilitating the formation of COOH* intermediate and thereby accelerating the overall CO2 reduction. This work supplies a general strategy to construct single-atom catalysts containing multiple metal species and reveals the vital importance of the communitive effect between adjacent single atoms toward improved catalysis.

8.
Nat Nanotechnol ; 16(12): 1386-1393, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34531557

ABSTRACT

Converting CO2 emissions, powered by renewable electricity, to produce fuels and chemicals provides an elegant route towards a carbon-neutral energy cycle. Progress in the understanding and synthesis of Cu catalysts has spurred the explosive development of electrochemical CO2 reduction (CO2RR) technology to produce hydrocarbons and oxygenates; however, Cu, as the predominant catalyst, often exhibits limited selectivity and activity towards a specific product, leading to low productivity and substantial post-reaction purification. Here, we present a single-atom Pb-alloyed Cu catalyst (Pb1Cu) that can exclusively (~96% Faradaic efficiency) convert CO2 into formate with high activity in excess of 1 A cm-2. The Pb1Cu electrocatalyst converts CO2 into formate on the modulated Cu sites rather than on the isolated Pb. In situ spectroscopic evidence and theoretical calculations revealed that the activated Cu sites of the Pb1Cu catalyst regulate the first protonation step of the CO2RR and divert the CO2RR towards a HCOO* path rather than a COOH* path, thus thwarting the possibility of other products. We further showcase the continuous production of a pure formic acid solution at 100 mA cm-2 over 180 h using a solid electrolyte reactor and Pb1Cu.

9.
Nat Nanotechnol ; 16(10): 1141-1149, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34312515

ABSTRACT

Atomically dispersed metal catalysts maximize atom efficiency and display unique catalytic properties compared with regular metal nanoparticles. However, achieving high reactivity while preserving high stability at appreciable loadings remains challenging. Here we solve the challenge by synergizing metal-support interactions and spatial confinement, which enables the fabrication of highly loaded atomic nickel (3.1 wt%) along with dense atomic copper grippers (8.1 wt%) on a graphitic carbon nitride support. For the semi-hydrogenation of acetylene in excess ethylene, the fabricated catalyst shows extraordinary catalytic performance in terms of activity, selectivity and stability-far superior to supported atomic nickel alone in the absence of a synergizing effect. Comprehensive characterization and theoretical calculations reveal that the active nickel site confined in two stable hydroxylated copper grippers dynamically changes by breaking the interfacial nickel-support bonds on reactant adsorption and making these bonds on product desorption. Such a dynamic effect confers high catalytic performance, providing an avenue to rationally design efficient, stable and highly loaded, yet atomically dispersed, catalysts.

10.
Nature ; 589(7842): 396-401, 2021 01.
Article in English | MEDLINE | ID: mdl-33473229

ABSTRACT

The water-gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1-Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production.

11.
J Am Chem Soc ; 143(1): 309-317, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33369393

ABSTRACT

Methanol-water reforming is a promising solution for H2 production/transportation in stationary and mobile hydrogen applications. Developing inexpensive catalysts with sufficiently high activity, selectivity, and stability remains challenging. In this paper, nickel-supported over face-centered cubic (fcc) phase α-MoC has been discovered to exhibit extraordinary hydrogen production activity in the aqueous-phase methanol reforming reaction. Under optimized condition, the hydrogen production rate of 2% Ni/α-MoC is about 6 times higher than that of conventional noble metal 2% Pt/Al2O3 catalyst. We demonstrate that Ni is atomically dispersed over α-MoC via carbon bridge bonds, forming a Ni1-Cx motif on the carbide surface. Such Ni1-Cx motifs can effectively stabilize the isolated Ni1 sites over the α-MoC substrate, rendering maximized active site density and high structural stability. In addition, the synergy between Ni1-Cx motif and α-MoC produces an active interfacial structure for water dissociation, methanol activation, and successive reforming processes with compatible activity.

12.
J Am Chem Soc ; 143(2): 628-633, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33382262

ABSTRACT

We report the syntheses of highly dispersed CoNi bimetallic catalysts on the surface of α-MoC based on the strong metal support interaction (SMSI) effect. The interaction between the nearly atomically dispersed Co and Ni atoms was observed for the first time by the real-space chemical mapping at the atomic level. Combined with the ability of α-MoC to split water at low temperatures, the as-synthesized CoNi/α-MoC catalysts exhibited robust and synergistic performance for the hydrogen production from hydrolysis of ammonia borane. The metal-normalized activity of the bimetallic 1.5Co1.5Ni/α-MoC catalyst reached 321.1 molH2·mol-1CoNi·min-1 at 298 K, which surpasses all the noble metal-free catalysts ever reported and is four times higher than that of the commercial Pt/C catalyst.

13.
J Am Chem Soc ; 142(16): 7276-7282, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32250611

ABSTRACT

Electrocatalytic CO2 reduction (CO2RR) to valuable fuels is a promising approach to mitigate energy and environmental problems, but controlling the reaction pathways and products remains challenging. Here a novel Cu2O nanoparticle film was synthesized by square-wave (SW) electrochemical redox cycling of high-purity Cu foils. The cathode afforded up to 98% Faradaic efficiency for electroreduction of CO2 to nearly pure formate under ≥45 atm CO2 in bicarbonate catholytes. When this cathode was paired with a newly developed NiFe hydroxide carbonate anode in KOH/borate anolyte, the resulting two-electrode high-pressure electrolysis cell achieved high energy conversion efficiencies of up to 55.8% stably for long-term formate production. While the high-pressure conditions drastically increased the solubility of CO2 to enhance CO2 reduction and suppress hydrogen evolution, the (111)-oriented Cu2O film was found to be important to afford nearly 100% CO2 reduction to formate. The results have implications for CO2 reduction to a single liquid product with high energy conversion efficiency.

14.
Angew Chem Int Ed Engl ; 58(42): 15089-15097, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31444841

ABSTRACT

The development of highly efficient metal-free carbon electrocatalysts for the oxygen reduction reaction (ORR) is one very promising strategy for the exploitation and commercialization of renewable and clean energy, but this still remains a significant challenge. Herein, we demonstrate a facile approach to prepare three-dimensional (3D) N-doped carbon with a sp3 /sp2 carbon interface derived from ionic liquids via a simple pyrolysis process. The tunable hybrid sp3 and sp2 carbon composition and pore structures stem from the transformation of ionic liquids to polymerized organics and introduction of a Co metal salt. Through tuning both composition and pores, the 3D N-doped nanocarbon with a high sp3 /sp2 carbon ratio on the surface exhibits a superior electrocatalytic performance for the ORR compared to that of the commercial Pt/C in Zn-air batteries. Density functional theory calculations suggest that the improved ORR performance can be ascribed to the existence of N dopants at the sp3 /sp2 carbon interface, which can lower the theoretical overpotential of the ORR.

15.
Angew Chem Int Ed Engl ; 56(17): 4712-4718, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28370955

ABSTRACT

Supported metal nanocrystals have exhibited remarkable catalytic performance in hydrogen generation reactions, which is influenced and even determined by their supports. Accordingly, it is of fundamental importance to determine the direct relationship between catalytic performance and metal-support interactions. Herein, we provide a quantitative profile for exploring metal-support interactions by considering the highest occupied state in single-atom catalysts. The catalyst studied consisted of isolated Rh atoms dispersed on the surface of VO2 nanorods. It was observed that the activation energy of ammonia-borane hydrolysis changed when the substrate underwent a phase transition. Mechanistic studies indicate that the catalytic performance depended directly on the highest occupied state of the single Rh atoms, which was determined by the band structure of the substrates. Other metal catalysts, even with non-noble metals, that exhibited significant catalytic activity towards NH3 BH3 hydrolysis were rationally designed by adjusting their highest occupied states.

16.
J Phys Condens Matter ; 29(19): 195001, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28379848

ABSTRACT

The properties of graphene can be chemically altered by changing its local binding configurations. In the present work, we investigate fundamentals of chemisorption of atomic hydrogen on graphene and its influence on mechanical properties of as-hydrogenated graphene by means of molecular dynamics simulations. Our simulation results indicate that there are diversiform hydrogen-graphene configurations formed in the chemisorption process. Especially, energetically favorable hydrogen pairs result in less even no atomic distortion of graphene than sp3 hybridization. The hydrogenation-induced deterioration of mechanical properties of graphene shows a strong dependence on its chirality. The evolution of bond structures in uniaxial tension along armchair direction is more sensitive to local failure of graphene than zigzag direction, leading to a more pronounced decrease in both fracture stress and fracture strain. It is indicated that the chemisorption of hydrogen on graphene can be strongly affected by operating temperature primarily due to the temperature dependent graphene morphology. These findings advance our understanding of chemical vapor deposition of graphene synthesis and hydrogenation of graphene.

17.
Nat Commun ; 7: 14036, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004661

ABSTRACT

Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h-1 among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...