Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38470724

ABSTRACT

The mesophase pitch-based carbon fiber interface material (TIM) with a vertical array was prepared by using mesophase pitch-based short-cut fibers (MPCFs) and 3016 epoxy resin as raw materials and carbon nanotubes (CNTs) as additives through electrostatic flocking and resin pouring molding process. The microstructure and thermal properties of the interface were analyzed by using a scanning electron microscope (SEM), laser thermal conductivity and thermal infrared imaging methods. The results indicate that the plate spacing and fusing voltage have a significant impact on the orientation of the arrays formed by mesophase pitch-based carbon fibers. While the orientation of the carbon fiber array has a minimal impact on the shore hardness of TIM, it does have a direct influence on its thermal conductivity. At a flocking voltage of 20 kV and plate spacing of 12 cm, the interface material exhibited an optimal thermal conductivity of 24.47 W/(m·K), shore hardness of 42 A and carbon fiber filling rate of 6.30 wt%. By incorporating 2% carbon nanotubes (CNTs) into the epoxy matrix, the interface material achieves a thermal conductivity of 28.97 W/(m·K) at a flocking voltage of 30 kV and plate spacing of 10 cm. This represents a 52.1% increase in thermal conductivity compared to the material without TIM. The material achieves temperature uniformity within 10 s at the same heat source temperatures, which indicates a good application prospect in IC packaging and electronic heat dissipation.

2.
Materials (Basel) ; 17(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473456

ABSTRACT

Carbon-based composite materials, denoted as C/C composites and possessing high thermal conductivity, were synthesized utilizing a three-dimensional (3D) preform methodology. This involved the orthogonal weaving of mesophase pitch-based fibers in an X (Y) direction derived from low-temperature carbonization, and commercial PAN-based carbon fibers in a Z direction. The 3D preforms were saturated with mesophase pitch in their raw state through a hot-pressing process, which was executed under relatively low pressure at a predetermined temperature. Further densification was achieved by successive stages of mesophase pitch impregnation (MPI), followed by impregnation with coal pitch under high pressure (IPI). The microstructure and thermal conductivity of the C/C composites were systematically examined using a suite of analytical techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and PLM, amongst others. The findings suggest that the volumetric fraction of fibers and the directional alignment of the mesophase pitch molecules can be enhanced via hot pressing. The high graphitization degree of the mesophase pitch matrix results in an increased microcrystalline size and thus improved thermal conductivity of the C/C composite. Conversely, the orientation of the medium-temperature coal pitch matrix is relatively low, which compensates for the structural inadequacies of the composite material, albeit contributing minimally to the thermal conductivity of the resultant C/C composites. Following several stages of impregnation with mesophase pitch and subsequent impregnation with medium-temperature coal pitch, the 3D C/C composites yielded a density of 1.83 and 2.02 g/cm3. The thermal conductivity in the X (Y) direction was found to be 358 and 400 W/(m·K), respectively.

3.
Materials (Basel) ; 13(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32325939

ABSTRACT

In this study, three kinds of round-shaped pitch-based graphite fiber with different microstructural features (crystallinity and carbon layer orientation) were fabricated by melt-spinning, preoxidation, carbonization and graphitization. The morphology, crystalline size and carbon layer orientation of carbon fibers from different pitch precursors and spinning rates were characterized through X-ray diffraction, scanning electron microscopy and transmission electron analyses. The correlation of the electrochemical performance and microstructure of graphite fibers as anode materials for lithium-ion batteries was investigated. The results suggest that large-diameter anisotropic graphite fibers (L-AF3000) with a radial texture of the transverse section are more favorable for lithium intercalation storage. The discharge capacity of L-AF3000 is 319.1 mAh∙g-1 at 0.1 C (current density). Nevertheless, the capacity drops to 209.9 mAh∙g-1 at a high current density of 1 C, and the capacity retention is only 82.2% over 100 cycles at 0.1 C. Small-diameter anisotropic graphite fibers (S-AF3000) with a spiral-shaped wrinkle texture of the transverse section possess discharge capacities of 284.1 mAh∙g-1 at 0.1 C and 260.2 mAh∙g-1 at a high current density of 1 C. Meanwhile, the best capacity retention of the fibers is 101.6% over 100 cycles at 0.1 C. The results suggest that the disordered carbon layers in S-AF3000 can retain the structural integrity of fibers as anode material for lithium-ion batteries and thus obtain excellent cycle stability. In addition, larger crystalline sizes of fibers correspond to higher discharge capacity, and a smaller diameter is beneficial to the fast insertion and extraction of lithium-ion in fibers.

4.
ACS Omega ; 4(1): 1095-1102, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459385

ABSTRACT

Two types of carbon fibers with a large diameter of ∼22 µm, derived from unstirred and vigorously stirred mesophase pitch melts with different liquid crystalline mesophase textures, were prepared by melt-spinning, stabilization, carbonization, and graphitization treatments. The morphology, microstructure, and physical properties of the carbon fibers derived from the two kinds of mesophase precursors after various processes were characterized in detail. The results show that the optical texture (i.e., size and orientation) of the liquid crystalline mesophase in the molten pitch is obviously modified by thermomechanical stirring treatment, which has a significant effect on the texture of as-spun pitch fibers, and finally dominates the microstructure and physical properties of the resulting carbon and graphite fibers. These large-diameter fibers expectedly maintain their morphological and structural integrity and effectively avoid shrinkage cracking during subsequent high-temperature heat treatment processes, in contrast to those derived from the unstirred pitch. This is due to the smaller crystallite sizes and lower orientation of graphene layers in the former. The tensile strength and axial electrical resistivity of the 3000 °C-graphitized large fibers derived from the unstirred pitch are about 1.8 GPa and 1.18 µΩ m, respectively. In contrast, upon melt stirring treatment of the pitch before spinning, the resulting large-diameter graphite fibers possess the corresponding values of 1.3 GPa and 1.86 µΩ m. Despite the acceptable decrease of mechanical properties and axial electrical and thermal conduction performance, the latter possesses relatively high mechanical stability (i.e., low strength deviation) and ideal morphological and structural integrity, which is beneficial for the wide applications in composites.

5.
Materials (Basel) ; 12(17)2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31450686

ABSTRACT

This study is focused on a novel high-thermal-conductive C/C composite used in heat-redistribution thermal protection systems. The 3D mesophase pitch-based carbon fiber (CFMP) preform was prepared using CFMP in the X (Y) direction and polyacrylonitrile carbon fiber (CFPAN) in the Z direction. After the preform was densified by chemical vapor infiltration (CVI) and polymer infiltration and pyrolysis (PIP), the 3D high-thermal-conductive C/C (CMP/C) composite was obtained. The prepared CMP/C composite has higher thermal conduction in the X and Y directions. After an ablation test, the CFPAN becomes needle-shaped, while the CFMP shows a wedge shape. The fiber/matrix and matrix/matrix interfaces are preferentially oxidized and damaged during ablation. After being coated by SiC coating, the thermal conductivity plays a significant role in decreasing the hot-side temperature and protecting the SiC coating from erosion by flame. The SiC-coated CMP/C composite has better ablation resistance than the SiC-coated CPAN/C composite. The mass ablation rate of the sample is 0.19 mg·(cm-2·s-1), and the linear ablation rate is 0.52 µm·s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...