Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomaterials ; 307: 122530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493672

ABSTRACT

The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Liposomes , Nanoparticles , Mice , Animals , Colorectal Neoplasms/drug therapy , Nanoparticles/therapeutic use , Administration, Oral , Magnetic Phenomena , Tumor Microenvironment
2.
ACS Appl Mater Interfaces ; 16(7): 9002-9011, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38344979

ABSTRACT

Metal-organic frameworks (MOFs) have recently gained extensive attention as potential materials for direct radiation detection due to their strong radiation absorption, long-range order, and chemical tunability. However, it remains challenging to develop a practical MOF-based X-ray direct detector that possesses high X-ray detection efficiency, radiation stability, and environmental friendliness. The integration of donor-acceptor (D-A) pairs into crystalline MOFs is a powerful strategy for the precise fabrication of multifunctional materials with unique optoelectronic properties. Herein, a new lead-free MOF, Cu2I2(TPPA) (CuI-TPPA, TPPA = tris[4-(pyridine-4-yl)phenyl]amine), with a 6-fold interpenetrated structure is designed and synthesized based on the electron donor-acceptor strategy. CuI-TPPA has a large mobility-lifetime (µτ) product of 5.8 × 10-4 cm2 V-1 and a high detection sensitivity of 73.1 µC Gyair-1 cm-2, surpassing that of commercial α-Se detectors. Moreover, the detector remains fairly stable with only a 2% reduction in photocurrent under continuous bias irradiation conditions with a total dose of over 42.83 Gyair. The CuI-TPPA/poly(vinylidene fluoride) flexible composite X-ray detector films are successfully manufactured with different thicknesses. Through multifaceted assessments, the optimal thickness is found with a high detection sensitivity of up to 143.6 µC Gyair-1 cm-2. As proof-of-concept, 11 × 9 pixelated X-ray detectors are fabricated on the same composite film to realize X-ray direct imaging. This work opens up potential applications of MOFs in environmentally friendly and wearable devices for direct X-ray detection and imaging.

3.
Int J Biol Macromol ; 258(Pt 2): 129115, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163498

ABSTRACT

Chitosan has been commonly used as an adhesive dressing material due to its excellent biocompatibility, degradability, and renewability. Tissue adhesives are outstanding among wound dressings because they can close the wound, absorb excess tissue exudate from the wound site, provide a moist environment, and act as a carrier for loading various bioactive molecules. They have been widely used in both preclinical and clinical treatment of skin wounds. This review summarizes recent research progresses in the application of chitosan and its derivatives for tissue adhesives. We also introduce their biomedical effects on wound adhesion, contamination isolation, antibacterial, immune regulation, and wound healing, and the strategies to achieve these functions when used as wound dressings. Finally, challenges and future perspectives of chitosan-based tissue adhesives are discussed for wound healing.


Subject(s)
Chitosan , Tissue Adhesives , Wound Healing , Anti-Bacterial Agents , Bandages , Adhesives , Hydrogels
4.
J Nanobiotechnology ; 22(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38169394

ABSTRACT

The clinical application of conventional medications for hepatocellular carcinoma treatment has been severely restricted by their adverse effects and unsatisfactory therapeutic effectiveness. Inspired by the concept of 'medicine food homology', we extracted and purified natural exosome-like lipid nanoparticles (LNPs) from black mulberry (Morus nigra L.) leaves. The obtained MLNPs possessed a desirable hydrodynamic particle size (162.1 nm), a uniform size distribution (polydispersity index = 0.025), and a negative surface charge (-26.6 mv). These natural LNPs were rich in glycolipids, functional proteins, and active small molecules (e.g., rutin and quercetin 3-O-glucoside). In vitro experiments revealed that MLNPs were preferentially internalized by liver tumor cell lines via galactose receptor-mediated endocytosis, increased intracellular oxidative stress, and triggered mitochondrial damage, resulting in suppressing the viability, migration, and invasion of these cells. Importantly, in vivo investigations suggested that oral MLNPs entered into the circulatory system mainly through the jejunum and colon, and they exhibited negligible adverse effects and superior anti-liver tumor outcomes through direct tumor killing and intestinal microbiota modulation. These findings collectively demonstrate the potential of MLNPs as a natural, safe, and robust nanomedicine for oral treatment of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Morus , Nanoparticles , Humans , Carcinoma, Hepatocellular/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Liver Neoplasms/drug therapy , Plant Leaves
5.
Angew Chem Int Ed Engl ; 63(7): e202318026, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38157447

ABSTRACT

The study of facile-synthesis and low-cost X-ray scintillators with high light yield, low detection limit and high X-ray imaging resolution plays a vital role in medical and industrial imaging fields. However, the optimal balance between X-ray absorption, decay lifetime and excitonic utilization efficiency of scintillators to achieve high-resolution imaging is extremely difficult due to the inherent contradiction. Here two thermally activated delayed fluorescence (TADF)-actived coinage-metal clusters M6 S6 L6 (M=Ag or Cu) were synthesized by simple solvothermal reaction, where the cooperation of heavy atom-rich character and TADF mechanism supports strong X-ray absorption and rapid luminescent collection of excitons. Excitingly, Ag6 S6 L6 (SC-Ag) displays a high photoluminescence quantum yield of 91.6 % and scintillating light yield of 17420 photons MeV-1 , as well as a low detection limit of 208.65 nGy s-1 that is 26 times lower than the medical standard (5.5 µGy s-1 ). More importantly, a high X-ray imaging resolution of 16 lp/mm based on SC-Ag screen is demonstrated. Besides, rigid core skeleton reinforced by metallophilicity endows clusters M6 S6 L6 strong resistance to humidity and radiation. This work provides a new view for the design of efficient scintillators and opens the research door for silver clusters in scintillation application.

6.
Sci Rep ; 13(1): 19221, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932287

ABSTRACT

Immune inhibitory receptors (IRs) play a critical role in the regulation of immune responses to various respiratory viral infections. However, in coronavirus disease 2019 (COVID-19), the roles of these IRs in immune modulation, metabolic reprogramming, and clinical characterization remain to be determined. Through consensus clustering analysis of IR transcription in the peripheral blood of patients with COVID-19, we identified two distinct IR patterns in patients with COVID-19, which were named IR_cluster1 and IR_cluster2. Compared to IR_cluster1 patients, IR_cluster2 patients with lower expressions of immune inhibitory receptors presented with a suppressed immune response, lower nutrient metabolism, and worse clinical manifestations or prognosis. Considering the critical influence of the integrated regulation of multiple IRs on disease severity, we established a scoring system named IRscore, which was based on principal component analysis, to evaluate the combined effect of multiple IRs on the disease status of individual patients with COVID-19. Similar to IR_cluster2 patients, patients with high IRscores had longer hospital-free days at day 45, required ICU admission and mechanical ventilatory support, and presented higher Charlson comorbidity index and SOFA scores. A high IRscore was also linked to acute infection phase and absence of drug intervention. Our investigation comprehensively elucidates the potential role of IR patterns in regulating the immune response, modulating metabolic processes, and shaping clinical manifestations of COVID-19. All of this evidence suggests the essential role of prognostic stratification and biomarker screening based on IR patterns in the clinical management and drug development of future emerging infectious diseases such as COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Prognosis , Patients , Immunity
7.
Biomaterials ; 302: 122332, 2023 11.
Article in English | MEDLINE | ID: mdl-37801790

ABSTRACT

The treatment efficacies of conventional medications against colorectal cancer (CRC) are restricted by a low penetrative, hypoxic, and immunosuppressive tumor microenvironment. To address these restrictions, we developed an innovative antitumor platform that employs calcium overload-phototherapy using mitochondrial N770-conjugated mesoporous silica nanoparticles loaded with CaO2 (CaO2-N770@MSNs). A loading level of 14.0 wt% for CaO2-N770@MSNs was measured, constituting an adequate therapeutic dosage. With the combination of oxygen generated from CaO2 and hyperthermia under near-infrared irradiation, CaO2-N770@MSNs penetrated through the dense mucus, accumulated in the colorectal tumor tissues, and inhibited tumor cell growth through endoplasmic reticulum stress and mitochondrial damage. The combination of calcium overload and phototherapy revealed high therapeutic efficacy against orthotopic colorectal tumors, alleviated the immunosuppressive microenvironment, elevated the abundance of beneficial microorganisms (e.g., Lactobacillaceae and Lachnospiraceae), and decreased harmful microorganisms (e.g., Bacteroidaceae and Muribaculaceae). Moreover, together with immune checkpoint blocker (αPD-L1), these nanoparticles showed an ability to eradicate both orthotopic and distant tumors, while potentiating systemic antitumor immunity. This treatment platform (CaO2-N770@MSNs plus αPD-L1) open a new horizon of synergistic treatment against hypoxic CRC with high killing power and safety.


Subject(s)
Colorectal Neoplasms , Hyperthermia, Induced , Nanoparticles , Humans , Calcium , Cell Line, Tumor , Phototherapy , Colorectal Neoplasms/therapy , Immunotherapy , Hypoxia , Tumor Microenvironment
8.
Small ; 19(42): e2302492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37154205

ABSTRACT

Anisotropic charge transport plays a pivotal role in clarifying the conductivity mechanism in direct X-ray detection to improve the detection sensitivity. However, the anisotropic photoelectric effect of semiconductive single crystal responsive to X-ray is still lacking of theoretical and experimental proof. The semiconductive coordination polymers (CPs) with designable structures, adjustable functions, and high crystallinity provide a suitable platform for exploring the anisotropic conductive mechanism. Here,the study first reveals a 1D conductive transmission path for direct X-ray detection from the perspective of structural chemistry. The semiconductive copper(II)-based CP 1 single crystal detector exhibits unique anisotropic X-ray detection performance. Along the 1D π-π stacking direction, the single crystal device (1-SC-a) shows a superior sensitivity of 2697.15 µCGyair -1  cm-2 and a low detection limit of 1.02 µGyair  s-1 among CPs-based X-ray detectors. This study provides beneficial guidance and deep insight for designing high-performance CP-based X-ray detectors.

9.
Nano Lett ; 23(10): 4351-4358, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37156492

ABSTRACT

Luminescent metal halides have been exploited as a new class of X-ray scintillators for security checks, nondestructive inspection, and medical imaging. However, the charge traps and hydrolysis vulnerability are always detrimental to the three-dimensional ionic structural scintillators. Here, the two zero-dimensional organic-manganese(II) halide coordination complexes 1-Cl and 2-Br were synthesized for improvements in X-ray scintillation. The introduction of a polarized phosphine oxide can help to increase the stabilities, especially the self-absorption-free merits of these Mn-based hybrids. The X-ray dosage rate detection limits reached up to 3.90 and 0.81 µGyair/s for 1-Cl and 2-Br, respectively, superior to the medical diagnostic standard of 5.50 µGyair/s. The fabricated scintillation films were applied to radioactive imaging with high spatial resolutions of 8.0 and 10.0 lp/mm, respectively, holding promise for use in diagnostic X-ray medical imaging.

10.
Inorg Chem ; 61(24): 8982-8986, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35658461

ABSTRACT

Two examples of efficient cathode-ray scintillation coordination polymers with good stability at high voltage were prepared by conjugating luminescent groups with d10 metal ions. The synergistic effect of inorganic metal and organic ligand suppresses the self-quenching of the conjugated luminescent groups and enhances the scintillation performance. This work provides new ideas for the design of new field-emission displays and cathode-ray scintillation materials.

11.
J Microbiol Biotechnol ; 26(5): 928-37, 2016 May 28.
Article in English | MEDLINE | ID: mdl-26869606

ABSTRACT

S-Nitrosoglutathione reductase (GSNOR) metabolizes S-nitrosoglutathione (GSNO) and has been shown to play important roles in regulating cellular signaling and formulating host defense by modulating intracellular nitric oxide levels. The enzyme has been found in bacterial, yeast, mushroom, plant, and mammalian cells. However, to date, there is still no evidence of its occurrence in filamentous fungi. In this study, we cloned and investigated a GSNOR-like enzyme from the filamentous fungus Aspergillus nidulans. The enzyme occurred in native form as a homodimer and exhibited low thermal stability. GSNO was an ideal substrate for the enzyme. The apparent Km and kcat values were 0.55 mM and 34,100 min(-1), respectively. Substrate binding sites and catalytic center amino acid residues based on those from known GSNORs were conserved in this enzyme, and the corresponding roles were verified using site-directed mutagenesis. Therefore, we demonstrated the presence of GSNOR in a filamentous fungus for the first time.


Subject(s)
Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Aspergillus nidulans/enzymology , Amino Acid Sequence , Aspergillus nidulans/genetics , Base Sequence , Binding Sites , Cloning, Molecular/methods , DNA, Complementary/genetics , Escherichia coli/genetics , Mutagenesis, Site-Directed , Nitric Oxide/metabolism , Nitrosation , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Nitrosoglutathione/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...