Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genomics Proteomics Bioinformatics ; 20(2): 350-365, 2022 04.
Article in English | MEDLINE | ID: mdl-34974191

ABSTRACT

Recent population studies have significantly advanced our understanding of how age shapes the gut microbiota. However, the actual role of age could be inevitably confounded due to the complex and variable environmental factors in human populations. A well-controlled environment is thus necessary to reduce undesirable confounding effects, and recapitulate age-dependent changes in the gut microbiota of healthy primates. Herein we performed 16S rRNA gene sequencing, characterized the age-associated gut microbial profiles from infant to elderly crab-eating macaques reared in captivity, and systemically revealed the lifelong dynamic changes of the primate gut microbiota. While the most significant age-associated taxa were mainly found as commensals such as Faecalibacterium, the abundance of a group of suspicious pathogens such as Helicobacter was exclusively increased in infants, underlining their potential role in host development. Importantly, topology analysis indicated that the network connectivity of gut microbiota was even more age-dependent than taxonomic diversity, and its tremendous decline with age could probably be linked to healthy aging. Moreover, we identified key driver microbes responsible for such age-dependent network changes, which were further linked to altered metabolic functions of lipids, carbohydrates, and amino acids, as well as phenotypes in the microbial community. The current study thus demonstrates the lifelong age-dependent changes and their driver microbes in the primate gut microbiota, and provides new insights into their roles in the development and healthy aging of their hosts.


Subject(s)
Gastrointestinal Microbiome , Healthy Aging , Microbiota , Humans , Infant , Animals , Aged , RNA, Ribosomal, 16S/genetics , Haplorhini/genetics
2.
Lipids Health Dis ; 18(1): 1, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611256

ABSTRACT

BACKGROUND: Excess energy intake contributes to metabolic disorders. However, the relationship between excess sugar and fat in their contributions to metabolic abnormalities remains to be further elucidated. Here we conducted a prospective feeding experiment to evaluate effects of dietary fat-to-sugar ratio on diet-induced metabolic abnormalities in adult cynomolgus monkeys. METHODS: Four groups of adult cynomolgus monkeys were fed regular chow plus emulsion with combinations of high sugar (HS) or low sugar (HS) and low fat (LF) or high fat (HF) for 7 months. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and blood glucose were measured for all the four groups of animals during the experiment. RESULTS: Plasma levels of TC and LDL-C gradually increased in all 4 diets groups, with the highest increase found in the LSHF group compared to the other three groups (P = 0.0018 and P = 0.0005 respectively). HF induced increased fasting glucose (P = 0.0077) and HS induced higher TG (P = 0.0227) respectively. Intriguingly, HSHF led to dramatically smaller magnitude of increase in LDL-C and TC levels compared to LSHF, while such difference was absent between the LSLF and LSHF groups. Our findings thus indicate interactive effects of HS and HF on TC and LDL-C. In addition, HF exhibited stronger effects on lipid abnormalities than HS. CONCLUSIONS: In the current study, our prospective feeding experiment in adult cynomolgus monkeys revealed effects of different fat-to-sugar ratios on diet-induced metabolic abnormalities. Furthermore, our findings suggest that not only excess dietary energy but also the balance of dietary fat-to-sugar ratio matters in diet-induced lipid abnormalities.


Subject(s)
Dietary Carbohydrates , Dietary Fats , Sugars , Animals , Female , Male , Administration, Oral , Blood Glucose/metabolism , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Macaca fascicularis , Prospective Studies , Sugars/administration & dosage , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...