Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401546, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716768

ABSTRACT

We have established a facile and efficient protocol for the generation of germyl radicals by employing photo-excited electron transfer (ET) in an electron donor-acceptor (EDA) complex to drive hydrogen-atom transfer (HAT) from germyl hydride (R3GeH). Using a catalytic amount of EDA complex of commercially available thiol and benzophenone derivatives, the ET-HAT cycle smoothly proceeds simply upon blue-light irradiation without any transition metal or photocatalyst. This protocol also affords silyl radical from silyl hydride.

2.
Org Lett ; 25(10): 1765-1770, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36883960

ABSTRACT

We report a simple, rapid, and selective protocol for visible-light-driven generation of silyl radicals through photoredox-induced Si-C bond homolysis. Irradiating 3-silyl-1,4-cyclohexadienes with blue light in the presence of a commercially available photocatalyst smoothly generated silyl radicals bearing various substituents within 1 h, and these radicals were trapped by a broad range of alkenes to afford products in good yields. This process is also available for efficient generation of germyl radicals.

3.
JACS Au ; 1(8): 1231-1239, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467361

ABSTRACT

Some experimental observations indicate that a sequential formation of secondary (2°) carbocations might be involved in some biosynthetic pathways, including those of verrucosane-type diterpenoids and mangicol-type sesterterpenoids, but it remains controversial whether or not such 2° cations are viable intermediates. Here, we performed comprehensive density functional theory calculations of these biosynthetic pathways. The results do not support previously proposed pathways/mechanisms: in particular, we find that none of the putative 2° carbocation intermediates is involved in either of the biosynthetic pathways. In verrucosane biosynthesis, the proposed 2° carbocations (II and IV) in the early stage are bypassed by the formation of the adjacent 3° carbocations and by unusual skeletal rearrangement reactions, and in the later stage, the putative 2° carbocation intermediates (VI, VII, and VIII) are not present as the proposed forms but as nonclassical structures between homoallyl and cyclopropylcarbinyl cations. In the mangicol biosynthesis, one of the two proposed 2° carbocations (X) is bypassed by a C-C bond-breaking reaction to generate a 3° carbocation with a C=C bond, while the other (XI) is bypassed by a strong hyperconjugative interaction leading to a nonclassical carbocation. We propose new biosynthetic pathways/mechanisms for the verrucosane-type diterpenoids and mangicol-type sesterterpenoids. These pathways are in good agreement with the findings of previous biosynthetic studies, including isotope-labeling experiments and byproducts analysis, and moreover can account for the biosynthesis of related terpenes.

4.
Angew Chem Int Ed Engl ; 59(26): 10639-10644, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32219934

ABSTRACT

Silicon-containing compounds are widely used as synthetic building blocks, functional materials, and bioactive reagents. In particular, silyl radicals are important intermediates for the synthesis and transformation of organosilicon compounds. Herein, we describe the first protocol for the generation of silyl radicals by photoinduced decarboxylation of silacarboxylic acids, which can be easily prepared in high yield on a gram scale and are very stable to air and moisture. Irradiation of silacarboxylic acids with blue LEDs (455 nm) in the presence of a commercially available photocatalyst releases silyl radicals, which can further react with various alkenes to give the corresponding silylated products in good-to-high yields with broad functional-group compatibility. This reaction proceeds in the presence of water, enabling efficient deuterosilylation of alkenes with D2 O as the deuterium source. Germyl radicals were similarly obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...