Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(40): 27506-27515, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37800330

ABSTRACT

Clindamycin is an antibiotic used to treat a variety of bacterial infections. The sustained release of clindamycin from the drug carrier is an important strategy to prolong the effective antibacterial duration. In this work, the microstructure and dynamics of clindamycin confined into the nanopores of mesopore silica with different pore sizes were studied using molecular dynamics simulation. It is found that there is a layering behavior for clindamycin distribution as a function of distance from the pore surface to the pore center with preferred location near the surface of the nanopore. The radial distribution function between carbonyl oxygen and the silanol groups shows the highest intensity of the first peak with the preferred orientation of carbonyl oxygen pointing toward the pore surface, which suggests the strong interaction between the carbonyl oxygen and the silanol groups on the pore surface. The higher local diffusion coefficients for the clindamycin molecules near the pore surface can be found. In addition, the presence of water can lead to the shift of clindamycin distribution away from the surface and promote the local diffusion of clindamycin near the pore surface. The information in this work will provide the microscopic understanding for the design of the drug carriers for the controlled release of clindamycin.


Subject(s)
Clindamycin , Silicon Dioxide , Silicon Dioxide/chemistry , Drug Carriers/chemistry , Oxygen
2.
ChemSusChem ; 9(16): 2239-49, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27469616

ABSTRACT

A series of monobenzoporphyrins (WH1-WH4) bearing different conjugated spacer groups were designed and synthesized as sensitizers for dye-sensitized solar cells. Although a phenyl spacer only has a minimal impact on the absorption bands of the monobenzoporphyrin, an ethynylphenyl (WH3) or a vinyl (WH4) spacer redshifts and broadens the absorption bands of the dyes to result in much enhanced light-harvesting ability. Dye-sensitized solar cells based on these monobenzoporphyrin dyes displayed remarkable differences in power conversion efficiencies (PCEs). The monobenzoporphyrin bearing no spacer (WH1) resulted in a PCE of only 0.5 %; in contrast, the monobenzoporphyrin bearing vinyl spacers (WH4) achieved a PCE of 5.2 %. The high efficiency of the WH4 cell is attributed to the higher light-harvesting ability, the lesser extent of aggregation on the TiO2 surface, and the more favorable electron-density distributions of the HOMO and LUMO for electron injection and collection. This work demonstrates the exceptional tunability of benzoporphyrins as sensitizers for dye-sensitized solar cells.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Porphyrins/chemistry , Solar Energy , Models, Molecular , Molecular Conformation , Optical Phenomena , Surface Properties , Titanium/chemistry
3.
J Inorg Biochem ; 136: 130-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24507930

ABSTRACT

Cobalt(III) triarylcorroles containing 0-3 nitro groups on the para-position of the three meso-phenyl rings of the macrocycle were synthesized and characterized by electrochemistry, mass spectrometry, (UV-vis) and (1)H NMR spectroscopy. The examined compounds are represented as (NO2Ph)(n)Ph(3-n)CorCo(PPh3), where n varies from 0 to 3 and Cor represents the core of the corrole. Each compound can undergo two metal-centered one-electron reductions leading to formation of Co(II) and Co(I) derivatives in CH2Cl2 or pyridine containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). A stepwise two electron reduction of each NO2Ph group of the compound is also observed. The first is reversible and occurs in a single overlapping step at the same potential which involves an overall one-, two- or three-electron transfer process for compounds 2-4, respectively. This indicates the lack of an interaction between these redox active sites on the corroles. The second reduction of the NO2Ph groups is irreversible and located at a potential which overlaps the Co(II)/Co(I) process of the compounds. Thin-layer UV-visible spectroelectrochemical measurements in CH2Cl2, 0.1 M TBAP demonstrate the occurrence of an equilibrium between a Co(III) π-anion radical and a Co(II) derivative with an uncharged macrocycle after the first controlled potential reduction of the nitro-substituted corroles. All four cobalt corroles were also examined as catalysts for the electroreduction of O2 when coated on an edge-plane pyrrolytic graphite electrode in 1.0 M HClO4. This study indicates that the larger the number of nitro-substituents on the cobalt corrole, the better the compound acts as a catalyst.


Subject(s)
Coordination Complexes/chemistry , Nitrogen Dioxide/chemistry , Oxygen/chemistry , Porphyrins/chemistry , Catalysis , Electrochemical Techniques , Electrochemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...