Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 35(51): 16712-16717, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31756112

ABSTRACT

Static nanodroplets and dynamic contact line (CL) movements were visualized by an in situ transmission electron microscope (TEM) liquid cell technique at nanometer spatial resolution. Crawling and sliding movements of nanoscale CL were observed. The crawling happened at a capillary number (Ca) range of ∼10-9 to ∼10-8, and the sliding happened at a Ca range of ∼10-8 to ∼10-7. Three dimensional (3D) image construction had been employed to study static and dynamic contact angles (CAs) at nanoscale. CA hysteresis at nanoscale was observed in the sliding but not in the crawling. The energies associated with sliding were analyzed to investigate the CA hysteresis. An empirical model of the relationship between nanoscale CAs and Ca was developed. Both the experimental observation and the empirical analysis suggested that the competition among substrate defect, CL elastic, and molecular activation energies dictated different CL movements at nanoscale.

2.
Sci Rep ; 6: 37044, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841322

ABSTRACT

Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above » Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures.

3.
Nanoscale Res Lett ; 6(1): 246, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21711760

ABSTRACT

An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...