Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(26): 18148-18160, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38854839

ABSTRACT

As an adsorbent, biochar has a highly porous structure and strong adsorption capacity, and can effectively purify the environment. In response to the increasingly serious problem of heavy metal pollution in water, this study used nano zero valent iron and rice husk biochar to prepare a new type of magnetic sheet-like biochar loaded nano zero valent iron (BC-nZVI) composite material through rheological phase reaction, showing remarkable advantages such as low cost, easy preparation, and superior environmental remediation effect. The physical and chemical properties and structure of the material were extensively characterized using various methods such as HRTEM, XPS, FESEM, EDS, XRD, FTIR, and RAMAN. Concurrently, batch experiments were undertaken to assess the removal efficiency of Pb(ii) by BC-nZVI, with investigations into the influence of pH value, temperature, soil water ratio, and initial concentration of heavy metal ion solution on its removal efficiency. The results indicate that the removal of Pb(ii) by BC-nZVI reaches an equilibrium state after around 120 minutes. Under the conditions of pH 6, temperature 20 °C, soil water ratio 1 : 5, and BC-nZVI dosage of 1 g L-1, BC-nZVI can reduce the Pb(ii) content in wastewater with an initial concentration of 30 mg L-1 to trace levels, and the treatment time is about 120 minutes. The analysis of adsorption kinetics and isotherms indicates that the adsorption process of Pb(ii) by BC-nZVI adheres to the quasi-second-order kinetic model and Langmuir model, suggesting a chemical adsorption process. Thermodynamic findings reveal that the adsorption of Pb(ii) by BC-nZVI is spontaneous. Furthermore, BC-nZVI primarily accumulates Pb(ii) through adsorption co-precipitation. BC-nZVI serves as an eco-friendly, cost-effective, and highly efficient adsorbent, showing promising capabilities in mitigating Pb(ii) heavy metal pollution. Its recoverability and reusability facilitated by an external magnetic field make it advantageous for remediating and treating lead-contaminated sites.

2.
RSC Adv ; 13(38): 26983-26994, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37692341

ABSTRACT

Nanoscale zero-valent iron (nZVI) and its composites are known for their excellent ability to remove Cr(vi), but their preparation can be expensive due to the reduction processes. This study presents a cost-effective method to prepare core@shell structured nZVI@Fe3O4 nanocomposites using a novel Fe(ii) disproportionation reaction. The nZVI@Fe3O4 was thoroughly characterized using various techniques, including FESEM, HRTEM, EDS, XPS, XRD, FTIR, and VSM. Batch experiments were performed to evaluate the removal efficiency of nZVI@Fe3O4 in eliminating Cr(vi) ions from aqueous solutions, while classical models were employed to investigate the influencing factors associated with the removal process. The results showed that a 0.7 mg per ml NaOH solution reacted with Fe(ii) at 150 °C for 0.5 h could be used to prepare nZVI@Fe3O4 composites efficiently and inexpensively. nZVI@Fe3O4 was able to remove more than 99% of Cr(vi) from both simulated Cr(vi) solutions and real electroplating wastewater, and the recovery and preparation could be easily performed using external magnets to separate it from the solution. At pH 6.0, the maximum adsorption capacity (qmax) for Cr(vi) reached 58.67 mg g-1. The reaction mechanism was discussed from the perspective of electron transfer. Overall, the results suggest that nZVI@Fe3O4, an efficient adsorbent prepared using an environmentally friendly and inexpensive Fe(ii) disproportionation reaction, is a promising option for the treatment of Cr(vi) from industrial wastewater and other contaminated water sources.

3.
ACS Omega ; 4(18): 17741-17751, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31681880

ABSTRACT

A novel quaternary cationic pillar[5]arene-modified zeolite (WPA5/zeolite) was prepared via charge interaction between the cationic WPA5 and natural zeolite and characterized by scanning electron microscopy (SEM), Fourier transform infrared absorption spectroscopy, X-ray diffraction, solid-state nuclear magnetic resonance, and thermogravimetric (TG) analysis. The effects of zeolite particle size, WPA5 concentration, adsorption time, initial concentration, and pH on the removal of methyl orange (MO) were studied. The SEM and XRD results revealed a strong interaction between WPA5 and natural zeolite, and the modified composites showed novel microscopic morphology and structural properties. TG analysis indicated excellent thermal stability of the composite. MO was removed via electrostatic adsorption, and the removal efficiency was 84% at an initial concentration of 100 mg/L. Increase in the initial dye concentration enhanced the adsorption capacity of WPA5/zeolite and decreased the removal of MO. Based on the adsorption kinetics, the pseudo-second-order model (R 2 = 0.998) described the kinetic behavior of MO on WPA5/zeolite. In addition, UV and fluorescence spectra revealed that MO and WPA5 are complexed by a 1:1 complex ratio, and the binding constant between them was 12 595 L·mol-1. NMR and molecular docking also verified their interaction. Therefore, the potential application of the prepared composite includes removal of organic anionic dyes.

SELECTION OF CITATIONS
SEARCH DETAIL
...