Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Sci ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830803

ABSTRACT

Cimex species are ectoparasites that exclusively feed on warm-blooded animals such as birds and mammals. Three cimicid species are known to be persistent pests for humans, including the tropical bed bug Cimex hemipterus, common bed bug Cimex lectularius, and Eastern bat bug Leptocimex boueti. To date, genomic information is restricted to the common bed bug C. lectularius, which limits understanding their biology and to provide controls of bed bug infestations. Here, a chromosomal-level genome assembly of C. hemipterus (495 Mb [megabase pairs]) contained on 16 pseudochromosomes (scaffold N50 = 34 Mb), together with 9 messenger RNA and small RNA transcriptomes were obtained. In comparison between hemipteran genomes, we found that the tetraspanin superfamily was expanded in the Cimex ancestor. This study provides the first genome assembly for the tropical bed bug C. hemipterus, and offers an unprecedented opportunity to address questions relating to bed bug infestations, as well as genomic evolution to hemipterans more widely.

2.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565997

ABSTRACT

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Subject(s)
Heteroptera , Insect Hormones , MicroRNAs , Animals , Glycine max/genetics , Heteroptera/genetics , Transcriptome , MicroRNAs/genetics , Gene Expression Profiling
3.
BMC Genomics ; 23(1): 65, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057741

ABSTRACT

BACKGROUND: Soybean is a major legume crop with high nutritional and environmental values suitable for sustainable agriculture. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are important regulators of gene functions in eukaryotes. However, the interactions between these two types of ncRNAs in the context of plant physiology, especially in response to salinity stress, are poorly understood. RESULTS: Here, we challenged a cultivated soybean accession (C08) and a wild one (W05) with salt treatment and obtained their small RNA transcriptomes at six time points from both root and leaf tissues. In addition to thoroughly analyzing the differentially expressed miRNAs, we also documented the first case of miRNA arm-switching (miR166m), the swapping of dominant miRNA arm expression, in soybean in different tissues. Two arms of miR166m target different genes related to salinity stress (chloroplastic beta-amylase 1 targeted by miR166m-5p and calcium-dependent protein kinase 1 targeted by miR166m-3p), suggesting arm-switching of miR166m play roles in soybean in response to salinity stress. Furthermore, two pairs of miRNA:lncRNA interacting partners (miR166i-5p and lncRNA Gmax_MSTRG.35921.1; and miR394a-3p and lncRNA Gmax_MSTRG.18616.1) were also discovered in reaction to salinity stress. CONCLUSIONS: This study demonstrates how ncRNA involves in salinity stress responses in soybean by miRNA arm switching and miRNA:lncRNA interactions. The behaviors of ncRNAs revealed in this study will shed new light on molecular regulatory mechanisms of stress responses in plants, and hence provide potential new strategies for crop improvement.


Subject(s)
Glycine max , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Salt Stress , Glycine max/genetics , Transcriptome
4.
Front Genet ; 11: 1027, 2020.
Article in English | MEDLINE | ID: mdl-33133135

ABSTRACT

Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.

5.
Int J Mol Sci ; 21(19)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036280

ABSTRACT

The interactions of plants with environment and insects are bi-directional and dynamic. Consequently, a myriad of mechanisms has evolved to engage organisms in different types of interactions. These interactions can be mediated by allelochemicals known as volatile organic compounds (VOCs) which include volatile terpenes (VTs). The emission of VTs provides a way for plants to communicate with the environment, including neighboring plants, beneficiaries (e.g., pollinators, seed dispersers), predators, parasitoids, and herbivores, by sending enticing or deterring signals. Understanding terpenoid distribution, biogenesis, and function provides an opportunity for the design and implementation of effective and efficient environmental calamity and pest management strategies. This review provides an overview of plant-environment and plant-insect interactions in the context of terpenes and terpenoids as important chemical mediators of these abiotic and biotic interactions.


Subject(s)
Plants/metabolism , Terpenes/metabolism , Animals , Herbivory , Insecta/drug effects , Plant Physiological Phenomena , Plants/chemistry , Terpenes/pharmacology
6.
PLoS Biol ; 18(9): e3000636, 2020 09.
Article in English | MEDLINE | ID: mdl-32991578

ABSTRACT

The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs-including species-specific microRNA arm switching-providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes-and in particular the reconstruction of the myriapod ancestral situation-for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely.


Subject(s)
Adaptation, Biological/genetics , Arthropods , Evolution, Molecular , Genome/genetics , Animals , Arthropods/classification , Arthropods/genetics , Base Sequence , DNA Transposable Elements/genetics , Genes, Homeobox , Genome, Insect , Insecta/classification , Insecta/genetics , MicroRNAs/genetics , Phylogeny , Synteny
7.
Int J Mol Sci ; 19(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347694

ABSTRACT

Our understanding of microRNA (miRNA) regulation of gene expression and protein translation, as a critical area of cellular regulation, has blossomed in the last two decades. Recently, it has become apparent that in plant-insect interactions, both plants and insects use miRNAs to regulate their biological processes, as well as co-opting each others' miRNA systems. In this review article, we discuss the current paradigms of miRNA-mediated cellular regulation and provide examples of plant-insect interactions that utilize this regulation. Lastly, we discuss the potential biotechnological applications of utilizing miRNAs in agriculture.


Subject(s)
Host-Parasite Interactions/genetics , Insecta/pathogenicity , Magnoliopsida/parasitology , MicroRNAs/genetics , Animals , Insecta/genetics , Magnoliopsida/genetics
8.
Oncotarget ; 8(14): 23470-23478, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28423585

ABSTRACT

In this study, we conducted a case-control study to explore the association between rs1550117 A>G variant of DNMT3A gene promoter and non-small cell lung cancer (NSCLC) susceptibility in a Han Chinese population. The genotyping of rs1550117 A>G variant was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and confirmed by sequencing. Allele G of rs1550117 was associated with an increased risk of NSCLC. Moreover, individuals carrying the GG genotypes had a higher risk to develop NSCLC than the AA and GA genotype carriers. Further stratified analysis showed that rs1550117 A>G was significantly related to age (> 60 years), male, smoking and drinking. In vivo detection of DNMT3A mRNA levels in NSCLC tissues and in vitro luciferase assays consistently showed that the allele G significantly decreased DNMT3A transcription. Additional functional analysis revealed that the increased binding affinity of transcription repressor SP1, which was associated with allele G of rs1550117, led to the significant decreased expression of DNMT3A. Collectively, our results propose a suppression role of DNMT3A in NSCLC development and emphasize the dual roles of DNMT3A in tumorigenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Genetic Predisposition to Disease/genetics , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Adult , Aged , Aged, 80 and over , Alleles , Asian People/genetics , Carcinoma, Non-Small-Cell Lung/ethnology , Case-Control Studies , China , DNA Methyltransferase 3A , Female , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genotype , Humans , Lung Neoplasms/ethnology , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Protein Binding , Risk Factors , Sp1 Transcription Factor/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...