Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 273(Pt 2): 132769, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823745

ABSTRACT

Paper-based test film material is widely used in a variety of test instruments for different applications. The enzyme activity test paper sheet is one of the most popularly used test papers. Here we present a novel fabrication of paper-based enzyme activity test paper without cationic resin added in. The chemical pulping fibers were first beaten to different degrees (from 14.6 to 41.5°SR) with a PFI beater. After that, the fibers were modified with a cationic agent (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) under the system of alkali and water solution. Finally, the test papers were made with the modified fiber by a regular paper former in lab. The results showed that beating is beneficial for the improvement of the cationization reaction which is indicated by the Zeta potential, FTIR and EDS. The main mechanisms involved are the destruction of crystalline zone, increase of free hydroxyl group and defibrillation. This hypothesis was supported by the SEM, XRD and fiber analyzer. Beating under the optimized condition, the wet strength and liquid absorbability of test paper can meet the application requirement, and the test results of enzyme activity are quite close to those of commercial test papers.


Subject(s)
Anions , Paper , Adsorption , Anions/chemistry , Wood/chemistry , Cations/chemistry
2.
Int J Biol Macromol ; 256(Pt 2): 128290, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992926

ABSTRACT

The main purpose of this paper was to systematically evaluate the effect of lignin, which was fractioned by green solvents into different molecular weights and used as polyol in the production of polyurethane foams (PUF). The results indicated that the foams prepared with the lower molecular weight lignin had uniform and complete pore structure and improved the mechanical strength. However, the higher molecular weight fraction lignin improved the density and thermal stability of the foam more significantly at the expense of inferior mechanical strength and pore structure deficiency. When the substitution degree of lignin in the PUF was 2 %-30 %, 99.13 % of the lowest molecular weight lignin was participated in the reaction to produce PUF, which improved the elongation at break (Eb) and tensile strength (Ts) of PUF to 834 % and 0.90 MPa, respectively. Also, thermal stability and the amount of unreacted lignin in PUF were increased at a higher substitution degree of lignin in PUF.


Subject(s)
Lignin , Polymers , Polyurethanes , Molecular Weight
3.
Microb Cell Fact ; 22(1): 240, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986164

ABSTRACT

BACKGROUND: trans-4-Hydroxyproline (T-4-HYP) is a promising intermediate in the synthesis of antibiotic drugs. However, its industrial production remains challenging due to the low production efficiency of T-4-HYP. This study focused on designing the key nodes of anabolic pathway to enhance carbon flux and minimize carbon loss, thereby maximizing the production potential of microbial cell factories. RESULTS: First, a basic strain, HYP-1, was developed by releasing feedback inhibitors and expressing heterologous genes for the production of trans-4-hydroxyproline. Subsequently, the biosynthetic pathway was strengthened while branching pathways were disrupted, resulting in increased metabolic flow of α-ketoglutarate in the Tricarboxylic acid cycle. The introduction of the NOG (non-oxidative glycolysis) pathway rearranged the central carbon metabolism, redirecting glucose towards acetyl-CoA. Furthermore, the supply of NADPH was enhanced to improve the acid production capacity of the strain. Finally, the fermentation process of T-4-HYP was optimized using a continuous feeding method. The rate of sugar supplementation controlled the dissolved oxygen concentrations during fermentation, and Fe2+ was continuously fed to supplement the reduced iron for hydroxylation. These modifications ensured an effective supply of proline hydroxylase cofactors (O2 and Fe2+), enabling efficient production of T-4-HYP in the microbial cell factory system. The strain HYP-10 produced 89.4 g/L of T-4-HYP in a 5 L fermenter, with a total yield of 0.34 g/g, the highest values reported by microbial fermentation, the yield increased by 63.1% compared with the highest existing reported yield. CONCLUSION: This study presents a strategy for establishing a microbial cell factory capable of producing T-4-HYP at high levels, making it suitable for large-scale industrial production. Additionally, this study provides valuable insights into regulating synthesis of other compounds with α-ketoglutaric acid as precursor.


Subject(s)
Biosynthetic Pathways , Escherichia coli , Hydroxyproline , Escherichia coli/genetics , Escherichia coli/metabolism , Prolyl Hydroxylases/genetics , Prolyl Hydroxylases/metabolism , Citric Acid Cycle , Metabolic Engineering/methods , Carbon/metabolism
4.
Front Bioeng Biotechnol ; 10: 969668, 2022.
Article in English | MEDLINE | ID: mdl-36032726

ABSTRACT

In order to solve the problems of high complexity, many by-products, high pollution and difficult extraction of the existing adenine production process, in this study, ceramic membrane-coupled mixed cell fermentation was used to produce adenine while reducing the synthesis of by-products and simplifying the production process of adenine. Nucleoside hydrolase (encoded by the rihC gene) was used to produce adenine by coordinated fermentation with the adenosine-producing bacterium Bacillus Subtilis XGL. The adenosine hydrolase (AdHy)-expressing strain Escherichia coli BL21-AdHy was successfully employed and the highest activity of the crude enzyme solution was found by orthogonal experiments at 170 W power, 42% duty cycle, and 8 min of sonication. The highest AdHy activity was found after 18 h of induction incubation. E. coli BL21-AdHy was induced for 18 h and sonicated under the above ultrasonic conditions and the resulting crude enzyme solution was used for co-fermentation of the strain and enzyme. Moreover, 15% (v/v) of the AdHy crude enzyme solution was added to fermentation of B. subtilis XGL after 35 h. Finally, the whole fermentation system was dialyzed using coupled ceramic membranes for 45 and 75 h, followed by the addition of fresh medium. In contrast, the AdHy crude enzyme solution was added after 35, 65, and 90 h of B. subtilis fermentation, with three additions of 15, 15, and 10% of the B. subtilis XGL fermentation system. The process was validated in a 5 L fermenter and 14 ± 0.25 g/L of adenine was obtained, with no accumulation of adenosine and d-ribose as by-products. The enzymatic activity of the AdHy crude solution treated with ultrasound was greatly improved. It also reduced the cellular activity of E. coli BL21-AdHy and reduced effects on bacterial co-fermentation. Membrane-coupled dialysis solved the problem of decreased yield due to poor bacterial survival and decreased viability, and eliminated inhibition of the product synthesis pathway by adenosine. The batch addition of crude enzyme broth allowed the continuous conversion of adenosine to adenine. This production method provides the highest yield of biologically produced adenine reported to date, reduces the cost of adenine production, and has positive implications for the industrial production of adenine by fermentation. And it provides a reference for producing other high-value-added products made by fermentation.

5.
Water Res ; 222: 118922, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35932708

ABSTRACT

The scaling problem in the water supply pipeline will increase the resistance coefficient of the pipeline and the pressure of the water supply pipeline, which will not only affect the operation safety of the water supply pipeline, but also cause energy waste. The scale in the pipeline will also enrich heavy metal ions and pathogenic microorganisms, affecting the safety of water supply water quality and causing secondary pollution of water quality. At present, a lot of research has been done on the composition structure and crystallization process of the scale. The study found that calcite is the main component of the scale; the scale process is a heterogeneous nucleation process induced by heavy metal particles and their corrosion products in the pipeline. The introduction of electrochemical detection technology, density functional theory and molecular dynamics simulation has greatly improved the accuracy and timeliness of water scaling conditions detection and realized the visualization of scaling mechanism. In this paper, the measurement methods of the scale in the water supply pipeline and the corresponding material composition and crystal structure characteristics are reviewed, and the mechanism of the scale and the water quality conditions are summarized. At the end of this paper, based on summarizing the existing water quality scaling tendency evaluation methods, it is proposed to establish a water quality potential scaling risk assessment framework based on Puckorius scaling index (PSI) and electrochemical impedance spectroscopy (EIS) in the future.


Subject(s)
Water Quality , Water Supply , Calcium Carbonate/chemistry , Corrosion , Metals
6.
Front Chem ; 10: 839633, 2022.
Article in English | MEDLINE | ID: mdl-35223773

ABSTRACT

Aiming at the problems of low accuracy and large prediction errors caused by the serious overlap of multi-metal spectral signals in zinc smelting industrial wastewater, a characteristic interval modeling method is proposed. First, according to the absorption spectra of mixed solution, the characteristic intervals of copper and nickel are preliminarily screened by using different partition lengths. Second, take the smallest root mean squares error of cross validation and the largest correlation coefficient as the evaluation indicators, compare the full-spectral model and each local model, and select the optimal feature sub-intervals of copper and nickel. Last, the partial least squares method is used to model the combined wavelengths of the optimal sub-intervals to realize the simultaneous detection of copper and nickel. The linear determination ranges are 0.3-3.0 mg/L for copper and nickel. the correlation coefficients of copper and nickel are 0.9974 and 0.9966, respectively. The results show that the method reduces the complexity of the wavelength variable screening process, improves the accuracy of the model, and lays the foundation for the accurate analysis of polymetallic ions in zinc smelting industrial wastewater.

7.
Chem Commun (Camb) ; 58(2): 270-273, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34878459

ABSTRACT

Driven by bioinspiration and appreciation of the structure of ericifolione, a biomimetic tautomerization/intermolecular inverse-electron-demand hetero Diels-Alder reaction cascade sequence promoted by sodium acetate to rapidly construct sterically hindered dihydropyran scaffolds was established, which allowed the first straightforward biomimetic total syntheses of ericifolione and its analogues with high simplicity. Moreover, this methodology set the stage for the preparation of relevant natural products or derivatives.

8.
Front Chem ; 9: 716032, 2021.
Article in English | MEDLINE | ID: mdl-34395383

ABSTRACT

In the zinc hydrometallurgical purification process, the concentration ratio of zinc ion to trace nickel ion is as high as 105, so that the nickel spectral signal is completely covered by high concentration zinc signal, resulting in low sensitivity and nonlinear characteristics of nickel spectral signal. Aiming at the problem that it is difficult to detect nickel in zinc sulfate solution, this paper proposes a nonlinear integrated modeling method of extended Kalman filter based on Adaboost algorithm. First, a non-linear nickel model is established based on nickel standard solution. Second, an extended Kalman filter wavelength optimization method based on correlation coefficient is proposed to select wavelength variables with high signal sensitivity, large amount of information and strong nonlinear correlation. Finally, a nonlinear integrated modeling method based on Adaboost algorithm is proposed, which uses extended Kalman filter as a basic submodel, and realizes the stable detection of trace nickel through the weighted combination of multiple basic models. The results show that the average relative error of this method for detecting nickel is 4.56%, which achieves accurate detection of trace nickel in zinc sulfate solution.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117370, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31301648

ABSTRACT

In the zinc sulfate solution, the concentration ratio of zinc to metal ion impurities can be up to 105, which causes impurity ion signals to be severely masked by the zinc signal. In particular, nickel exhibits a strong nonlinearity. Conventional spectroscopic methods are commonly used to detect multi-component analytes with similar concentrations and require the detection component to be linear to satisfy Beer-Lambert law. In order to solve high concentration ratio and nonlinear problems, a spectrophotometric method combining the extended Kalman filter and derivative methods is proposed to simultaneously determine copper, cobalt and nickel in the zinc sulfate solution by ultraviolet-visible spectroscopy. The derivative method developed by using continuous wavelet transform with a Haar wavelet function was applied to detect copper and cobalt in regions with wavelengths greater than 500nm, in which the absorbance of zinc and nickel changed to a fixed value, where linear regression graphs for copper and cobalt were established at zero-crossing wavelengths. Extended Kalman filter spectrophotometry is a filtering algorithm for nonlinear systems, so it was proposed to iteratively detect nickel concentration. The detection range was found to be 0.5-5mg/L for copper, 0.3-3mg/L for cobalt, and 0.6-6mg/L. The predicted root mean square error was 0.097 for copper, 0.049 for cobalt, and 0.206 for nickel. The average relative deviations of copper, cobalt, and nickel in 10 sets of mixed solutions were 3.19%, 2.23%, and 4.56%, respectively. The spectrophotometric method studied is suitable for real-time detection and control of trace amounts of copper, cobalt, and nickel in purification process of zinc hydrometallurgy, and can be applied to more fields.

10.
Org Lett ; 16(11): 3008-11, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24845803

ABSTRACT

An ionic liquid-supported synthetic method for the construction of glycopeptides in high yields is reported. This method avoids the use of large excesses of reagents and chromatographic purification and, therefore, represents a useful addition to existing approaches for the ionic liquid-supported synthesis of oligosaccharides and peptides.


Subject(s)
Glycopeptides/chemical synthesis , Indicators and Reagents/chemistry , Oligosaccharides/chemical synthesis , Peptides/chemical synthesis , Glycopeptides/chemistry , Ionic Liquids , Molecular Structure , Oligosaccharides/chemistry , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...