Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(21): 5665-5671, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37265737

ABSTRACT

The direct catalytic α-hydrocarbylation of readily available amino acids with halohydrocarbons is one of the most straightforward methods leading to α,α-disubstituted non-proteinogenic α-amino acid compounds. However, all the reported methodologies depend on N-protected amino acids as starting materials. Herein, we report on three highly efficient aldehyde-catalyzed direct α-hydrocarbylations of N-unprotected amino acid esters with aryl-, allyl-, and benzyl halides. By promoting a simple chiral BINOL-aldehyde catalyst or combining catalysts of a chiral aldehyde and Lewis acid ZnCl2, the asymmetric α-arylation, α-allylation, and α-benzylation of amino acid esters with the corresponding halohydrocarbons proceed smoothly, producing α,α-disubstituted α-amino acids in moderate-to-high yields and good-to-excellent enantioselectivities. The asymmetric α-arylation reaction can be applied in the formal synthesis of the clinical candidate compound (+)-AG-041R. Based on the results given by control experiments, three reaction models are proposed to illustrate the stereoselective-control outcomes.

2.
Nat Commun ; 13(1): 7290, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435942

ABSTRACT

The combined catalytic systems derived from organocatalysts and transition metals exhibit powerful activation and stereoselective-control abilities in asymmetric catalysis. This work describes a highly efficient chiral aldehyde-nickel dual catalytic system and its application for the direct asymmetric α-propargylation reaction of amino acid esters with propargylic alcohol derivatives. Various structural diversity α,α-disubstituted non-proteinogenic α-amino acid esters are produced in good-to-excellent yields and enantioselectivities. Furthermore, a stereodivergent synthesis of natural product NP25302 is achieved, and a reasonable reaction mechanism is proposed to illustrate the observed stereoselectivity based on the results of control experiments, nonlinear effect investigation, and HRMS detection.


Subject(s)
Aldehydes , Amino Acids , Aldehydes/chemistry , Amino Acids/chemistry , Nickel , Stereoisomerism , Catalysis , Esters
3.
Chem Sci ; 13(13): 3796-3802, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432891

ABSTRACT

Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...