Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(13): 4111-4120, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35312331

ABSTRACT

Self-driven droplet transport along an open gradient surface is increasingly becoming popular for various microfluidics applications. In this work, a gradient copper oxide layer is formed on a copper sheet (as a bipolar electrode, BPE) in a KOH solution by bipolar electrochemistry. The deposits at different positions present a rich variety of colors, compositions, and microstructures along the longitudinal axis of the BPE. More than half the length of the anodic pole is covered by a Cu(OH)2/CuO composite layer of several micrometers thick, which is composed of dense micropillars with a decreasing spacing gradient to the anodic direction. The micropillar arrays are superhydrophilic, and after modified with 1-dodecanethiol, the tops of the dense micropillars constitute a hydrophobic and microscopically discontinuous surface with a wettability gradient. On such a gradient surface water droplets can move spontaneously to more hydrophilic direction at a velocity of about 16 mm s-1. The superhydrophobicity of the modified micropillar arrays is discussed through a comparison with the wax tubules on a lotus leaf. Theoretical analysis of the driving force reveals that the concave surface effect of water at the spacings between the micropillars is the critical factor for driving the rolling motion of the droplets along the gradient micropillar arrays.

2.
ChemSusChem ; 14(15): 3131-3138, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34076965

ABSTRACT

Low-cost and efficient bifunctional catalysts are urgently needed for overall water splitting used in large-scale energy storage. In this study, we develop a nickel and iron (di)sulfide (Ni-Fe-S) composite catalyst that is in situ synthesized and fixed within the intergranular nanopores inside high pure polycrystalline graphite. Two precursor solutions (reactants) may permeate the graphite intergranular pores to a depth of more than 3.5 mm. The nanoscale pores serve as an array of nanoreactors for the synthesis of the Ni-Fe-S nanoparticles under conditions much milder than usual. The prepared catalyst efficiently catalyzes both the hydrogen and oxygen evolution reactions (HER and OER) in 1.0 M KOH. It delivers a current density of 400 mA cm-2 at a full cell voltage of around 2.3 V without considerable activity decay over 24 h electrolysis. The active species of the catalyst are different for the HER and OER and discussed accordingly. The synthesis strategy based on the nanopores in a monolithic conductive substrate proves to be a simple, efficient, and promising way to prepare electrocatalysts that are cheap, abundant, and industrially attractive.

SELECTION OF CITATIONS
SEARCH DETAIL
...