Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36432243

ABSTRACT

In this study, blue perovskite quantum dots (PQDs) were prepared using didodecyldimethylammonium bromide (DDAB), which can passivate surface defects caused by the loss of surface ligands and reduce particle size distribution. After the passivation of DDAB, blue CsPbClxBr3-x PQDs dispersed in n-octane produced a more compact and uniform PQD thin film than the non-passivated ones. The resulting device showed a stabile lifetime, and an EL peak of 470 nm and a maximum EQE of 1.63% were obtained at an operating voltage of 2.6 V and a current density of 0.34 mA/cm2. This work aims to provide a simple method to prepare blue-emitting PQDs and high-performance PQD-based light-emitting devices.

2.
IEEE Trans Vis Comput Graph ; 28(10): 3417-3427, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33646953

ABSTRACT

To maintain incompressibility in SPH fluid simulations is important for visual plausibility. However, it remains an outstanding challenge to enforce incompressibility in such recent multiple-fluid simulators as the mixture-model SPH framework. To tackle this problem, we propose a novel incompressible SPH solver, where the compressibility of fluid is directly measured by the deformation gradient. By disconnecting the incompressibility of fluid from the conditions of constant density and divergence-free velocity, the new incompressible SPH solver is applicable to both single- and multiple-fluid simulations. The proposed algorithm can be readily integrated into existing incompressible SPH frameworks developed for single-fluid, and is fully parallelizable on GPU. Applied to multiple-fluid simulations, the new incompressible SPH scheme significantly improves the visual effects of the mixture-model simulation, and it also allows exploitation for artistic controlling.

3.
IEEE Trans Vis Comput Graph ; 28(12): 4810-4824, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34437065

ABSTRACT

Along with motion and deformation, fracture is a fundamental behaviour for solid materials, playing a critical role in physically-based animation. Many simulation methods including both continuum and discrete approaches have been used by the graphics community to animate fractures for various materials. However, compared with motion and deformation, fracture remains a challenging task for simulation, because the material's geometry, topology and mechanical states all undergo continuous (and sometimes chaotic) changes as fragmentation develops. Recognizing the discontinuous nature of fragmentation, we propose a discrete approach, namely the Bonded Discrete Element Method (BDEM), for fracture simulation. The research of BDEM in engineering has been growing rapidly in recent years, while its potential in graphics has not been explored. We also introduce several novel changes to BDEM to make it more suitable for animation design. Compared with other fracture simulation methods, the BDEM has some attractive benefits, e.g., efficient handling of multiple fractures, simple formulation and implementation, and good scaling consistency. But it also has some critical weaknesses, e.g., high computational cost, which demand further research. A number of examples are presented to demonstrate the pros and cons, which are then highlighted in the conclusion and discussion.

4.
IEEE Trans Vis Comput Graph ; 19(10): 1708-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23929850

ABSTRACT

The nonlinear and nonstationary nature of Navier-Stokes equations produces fluid flows that can be noticeably different in appearance with subtle changes. In this paper, we introduce a method that can analyze the intrinsic multiscale features of flow fields from a decomposition point of view, by using the Hilbert-Huang transform method on 3D fluid simulation. We show how this method can provide insights to flow styles and help modulate the fluid simulation with its internal physical information. We provide easy-to-implement algorithms that can be integrated with standard grid-based fluid simulation methods and demonstrate how this approach can modulate the flow field and guide the simulation with different flow styles. The modulation is straightforward and relates directly to the flow's visual effect, with moderate computational overhead.

5.
IEEE Trans Vis Comput Graph ; 19(2): 178-88, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22566469

ABSTRACT

Fluid flows are highly nonlinear and nonstationary, with turbulence occurring and developing at different length and time scales. In real-life observations, the multiscale flow generates different visual impacts depending on the distance to the viewer. We propose a new fluid simulation framework that adaptively allocates computational resources according to the viewer's position. First, a 3D empirical mode decomposition scheme is developed to obtain the velocity spectrum of the turbulent flow. Then, depending on the distance to the viewer, the fluid domain is divided into a sequence of nested simulation partitions. Finally, the multiscale fluid motions revealed in the velocity spectrum are distributed nonuniformly to these view-dependent partitions, and the mixed velocity fields defined on different partitions are solved separately using different grid sizes and time steps. The fluid flow is solved at different spatial-temporal resolutions, such that higher frequency motions closer to the viewer are solved at higher resolutions and vice versa. The new simulator better utilizes the computing power, producing visually plausible results with realistic fine-scale details in a more efficient way. It is particularly suitable for large scenes with the viewer inside the fluid domain. Also, as high-frequency fluid motions are distinguished from low-frequency motions in the simulation, the numerical dissipation is effectively reduced.

6.
IEEE Trans Vis Comput Graph ; 18(10): 1771-83, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21788670

ABSTRACT

Various types of video can be captured with fisheye lenses; their wide field of view is particularly suited to surveillance video. However, fisheye lenses introduce distortion, and this changes as objects in the scene move, making fisheye video difficult to interpret. Current still fisheye image correction methods are either limited to small angles of view, or are strongly content dependent, and therefore unsuitable for processing video streams. We present an efficient and robust scheme for fisheye video correction, which minimizes time-varying distortion and preserves salient content in a coherent manner. Our optimization process is controlled by user annotation, and takes into account a wide set of measures addressing different aspects of natural scene appearance. Each is represented as a quadratic term in an energy minimization problem, leading to a closed-form solution via a sparse linear system. We illustrate our method with a range of examples, demonstrating coherent natural-looking video output. The visual quality of individual frames is comparable to those produced by state-of-the-art methods for fisheye still photograph correction.

SELECTION OF CITATIONS
SEARCH DETAIL
...