Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174207, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38914327

ABSTRACT

Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.


Subject(s)
Biodegradation, Environmental , Dibutyl Phthalate , Ribosomes , Soil Pollutants , Soil Pollutants/metabolism , Dibutyl Phthalate/metabolism , Ribosomes/metabolism , Soil Microbiology , Gene Expression , Burkholderiaceae/metabolism , Burkholderiaceae/genetics
2.
Mar Pollut Bull ; 196: 115632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37826908

ABSTRACT

Spatial distributions of dissolved and particulate dimethylsulfoxide (DMSOd and DMSOp) were investigated off the northern Antarctic Peninsula during the austral summer of 2018, an ecologically and climatically important region of the world. In the upper waters, DMSOd was concentrated in the ice-melt zone because DMSO functions physiologically as an intracellular osmolyte and cryoprotectant. DMSOd concentrations had a weak positive correlation with temperature but a negative correlation with nutrients. This highlighted the importance of temperature-dependent biological activities and photolysis in DMSOd production and the important role of the intracellular antioxidation system in phytoplankton cells. The decrease of average DMSOp:Chl-a ratios in upper waters from west to east, along with decreasing temperatures and increasing diatoms proportions in the phytoplankton, illustrates how seawater DMSO production capacities depend on ambient temperatures and the composition of phytoplankton assemblages. DMSOp were accumulated in deep waters through bio-debris accumulation and microbial activity.


Subject(s)
Dimethyl Sulfoxide , Seawater , Antarctic Regions , Seasons , Phytoplankton/physiology
3.
Sci Total Environ ; 758: 143947, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33338791

ABSTRACT

We studied the spatial variations of six volatile halocarbons (VHCs), namely, iodomethane (CH3I), chloroform (CHCl3), tetrachloroethylene (C2Cl4), bromodichloromethane (CHBrCl2), dibromomethane (CH2Br2), and carbon tetrachloride (CCl4), and the environmental influencing factors involved in the cycling of VHCs in the upper ocean (0-500 m) off the Northern Antarctic Peninsula (NAP) during the summer of 2018. About 5%-10% of the total biogenic VHCs in the upper ocean were accumulated in the assemblage layer (AL) with high chlorophyll a. However, higher VHCs levels were observed in the dicothermal layer (DL) compared with the AL because of the preservation from winter and production from dinoflagellates and chlorophytes. Owing to the co-existence occurrence of sharp seasonal pycnocline and thick permanent pycnocline, DL could be an important VHCs reservoir in the upper water column during summer. In response to melting of sea ice and glacier, decreased salinity was responsible for ca. 50% of the variation in the CH2Br2 and CCl4 concentrations, which corresponded with increased CH2Br2 and CCl4 concentrations in the less saline water mass. Anthropogenic CCl4 was found with an average concentration of 44.9 pmol/L, and there was a strong positive relationship between CCl4 and CHCl3 in the upper water, indicating their similar source of pollutant transport caused by anthropogenic activities. Calculated sea-to-air fluxes of CCl4, C2Cl4, CHBrCl2, and CH2Br2 averaged 478.7, 93.7, 33.7, and 61.8 nmol/(m2·d) in summer, respectively, indicating that the waters off the NAP are important sources of VHCs for the atmosphere and exert potentially adverse impacts on the Antarctica ozone depletion.

SELECTION OF CITATIONS
SEARCH DETAIL
...