Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
Front Public Health ; 12: 1357709, 2024.
Article in English | MEDLINE | ID: mdl-38699429

ABSTRACT

Objective: This study explored the factors and influence degree of job satisfaction among medical staff in Chinese public hospitals by constructing the optimal discriminant model. Methods: The participant sample is based on the service volume of 12,405 officially appointed medical staff from different departments of 16 public hospitals for three consecutive years from 2017 to 2019. All medical staff (doctors, nurses, administrative personnel) invited to participate in the survey for the current year will no longer repeat their participation. The importance of all associated factors and the optimal evaluation model has been calculated. Results: The overall job satisfaction of medical staff is 25.62%. The most important factors affecting medical staff satisfaction are: Value staff opinions (Q10), Get recognition for your work (Q11), Democracy (Q9), and Performance Evaluation Satisfaction (Q5). The random forest model is the best evaluation model for medical staff satisfaction, and its prediction accuracy is higher than other similar models. Conclusion: The improvement of medical staff job satisfaction is significantly related to the improvement of democracy, recognition of work, and increased employee performance. It has shown that improving these five key variables can maximize the job satisfaction and motivation of medical staff. The random forest model can maximize the accuracy and effectiveness of similar research.


Subject(s)
Hospitals, Public , Job Satisfaction , Humans , China , Female , Male , Surveys and Questionnaires , Adult , Medical Staff, Hospital/psychology , Medical Staff, Hospital/statistics & numerical data , Middle Aged , Attitude of Health Personnel , Random Forest
2.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Article in English | MEDLINE | ID: mdl-38685244

ABSTRACT

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Subject(s)
Fungicides, Industrial , Mutation , Nicotiana , Phytophthora , Plant Diseases , Phytophthora/drug effects , Phytophthora/genetics , Nicotiana/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Benzamides/pharmacology , Pyridines/pharmacology , Drug Resistance, Fungal/genetics
3.
Adv Colloid Interface Sci ; 327: 103145, 2024 May.
Article in English | MEDLINE | ID: mdl-38615561

ABSTRACT

Friction and lubrication are ubiquitous in all kinds of movements and play a vital role in the smooth operation of production machinery. Water is indispensable both in the lubrication systems of natural organisms and in hydration lubrication systems. There exists a high degree of similarity between these systems, which has driven the development of hydration lubrication from biomimetic to artificial manufacturing. In particular, significant advancements have been made in the understanding of the mechanisms of hydration lubrication over the past 30 years. This enhanced understanding has further stimulated the exploration of biomimetic inspiration from natural hydration lubrication systems, to develop novel artificial hydration lubrication systems that are cost-effective, easily transportable, and possess excellent capability. This review summarizes the recent experimental and theoretical advances in the understanding of hydration-lubrication processes. The entire paper is divided into three parts. Firstly, surface interactions relevant to hydration lubrication are discussed, encompassing topics such as hydrogen bonding, hydration layer, electric double layer force, hydration force, and Stribeck curve. The second part begins with an introduction to articular cartilage in biomaterial lubrication, discussing its compositional structure and lubrication mechanisms. Subsequently, three major categories of bio-inspired artificial manufacturing lubricating material systems are presented, including hydrogels, polymer brushes (e.g., neutral, positive, negative and zwitterionic brushes), hydration lubricant additives (e.g., nano-particles, polymers, ionic liquids), and their related lubrication mechanism is also described. Finally, the challenges and perspectives for hydration lubrication research and materials development are presented.

4.
Int J Biol Macromol ; 267(Pt 1): 131453, 2024 May.
Article in English | MEDLINE | ID: mdl-38588842

ABSTRACT

Enterovirus 71 (EV71) causes hand-foot-and-mouth disease (HFMD), neurological complications, and even fatalities in infants. Clinically, the increase of extracellular vesicles (EVs) in EV71 patients' serum was highly associated with the severity of HFMD. EV71 boosts EVs biogenesis in an endosomal sorting complex required for transport (ESCRT)-dependent manner to facilitate viral replication. Yet, the impact of EVs-derived from ESCRT-independent pathway on EV71 replication and pathogenesis is highly concerned. Here, we assessed the effects of EV71-induced EVs from ESCRT-independent pathway on viral replication and pathogenesis by GW4869, a neutral sphingomyelinase inhibitor. Detailly, in EV71-infected mice, blockade of the biogenesis of tissue-derived EVs in the presence of GW4869 restored body weight loss, attenuated clinical scores, and improved survival rates. Furthermore, GW4869 dampens EVs biogenesis to reduce viral load and pathogenesis in multiple tissues of EV71-infected mice. Consistently, GW4869 treatment in a human intestinal epithelial HT29 cells decreased the biogenesis of EVs, in which the progeny EV71 particle was cloaked, leading to the reduction of viral infection and replication. Collectively, GW4869 inhibits EV71-induced EVs in an ESCRT-independent pathway and ultimately suppresses EV71 replication and pathogenesis. Our study provides a novel strategy for the development of therapeutic agents in the treatment for EV71-associated HFMD.


Subject(s)
Aniline Compounds , Endosomal Sorting Complexes Required for Transport , Enterovirus A, Human , Extracellular Vesicles , Virus Replication , Animals , Virus Replication/drug effects , Enterovirus A, Human/drug effects , Enterovirus A, Human/physiology , Mice , Extracellular Vesicles/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Benzylidene Compounds/pharmacology , Enterovirus Infections/virology , Enterovirus Infections/drug therapy , Enterovirus Infections/metabolism , Viral Load/drug effects , Female
5.
Sci Total Environ ; 929: 172572, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38641113

ABSTRACT

Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 µg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.


Subject(s)
Arsenic , Carbonates , Groundwater , Sulfates , Water Pollutants, Chemical , Arsenic/metabolism , Groundwater/chemistry , Groundwater/microbiology , Water Pollutants, Chemical/metabolism , Carbonates/metabolism , Sulfates/metabolism , Bacteria/metabolism , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry
6.
Virus Res ; 345: 199381, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679392

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious swine intestinal disease caused by PED virus (PEDV). Vaccination is a promising strategy to prevent and control PED. Previous studies have confirmed that glycosylation could regulate the immunogenicity of viral antigens. In this study, we constructed three recombinant PEDVs which removed the glycosylation sites in RBD. Viral infection assays revealed that similar replication characteristics between the recombinant viruses and parental PEDV. Although animal challenging study demonstrated that the glycosylation sites in RBD do not affect the pathogenicity of PEDV, we found that removing the glycosylation sites on the RBD regions could promote the IgG and neutralization titer in vivo, suggesting deglycosylation in RBD could enhance the immunogenicity of PEDV. These findings demonstrated that removal of the glycosylation sites in RBD is a promising method to develop PEDV vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Glycosylation , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Vero Cells , Chlorocebus aethiops , Immunoglobulin G/immunology , Immunoglobulin G/blood , Immunogenicity, Vaccine , Mice
7.
Polymers (Basel) ; 16(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543398

ABSTRACT

Probiotics have attracted great interest from many researchers due to their beneficial effects. Encapsulation of probiotics into biopolymer matrices has led to the development of active food packaging materials as an alternative to traditional ones for controlling food-borne microorganisms, extending food shelf life, improving food safety, and achieving health-promoting effects. The challenges of low survival rates during processing, storage, and delivery to the gut and low intestinal colonization, storage stability, and controllability have greatly limited the use of probiotics in practical food-preservation applications. The encapsulation of probiotics with a protective matrix can increase their resistance to a harsh environment and improve their survival rates, making probiotics appropriate in the food packaging field. Cellulose has attracted extensive attention in food packaging due to its excellent biocompatibility, biodegradability, environmental friendliness, renewability, and excellent mechanical strength. In this review, we provide a brief overview of the main types of cellulose used for probiotic encapsulation, as well as the current advances in different probiotic encapsulating strategies with cellulose, grafted cellulose, and cellulose-derived materials, including electrospinning, cross-linking, in-situ growth, casting strategies, and their combinations. The effect of cellulose encapsulation on the survival rate of probiotics and the patented encapsulated probiotics are also introduced. In addition, applications of cellulose-encapsulated probiotics in the food industry are also briefly discussed. Finally, the future trends toward developing encapsulated probiotics with improved health benefits and advanced features with cellulose-based materials are discussed.

8.
Stem Cells Transl Med ; 13(5): 462-476, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38459853

ABSTRACT

Adipose stem cell (ASC)-based therapies provide an encouraging option for tissue repair and regeneration. However, the function of these cells declines with aging, which limits their clinical transformation. Recent studies have outlined the involvement of long non-coding RNAs in stem cell aging. Here, we reanalyzed our published RNA sequencing (RNA-seq) data profiling differences between ASCs from young and old donors and identified a lncRNA named double homeobox A pseudogene 10 (DUXAP10) as significantly accumulated in aged ASCs. Knocking down DUXAP10 promoted stem cell proliferation and migration and halted cell senescence and the secretion of proinflammatory cytokines. In addition, DUXAP10 was located in the cytoplasm and functioned as a decoy for miR-214-3p. miR-214-3p was downregulated in aged ASCs, and its overexpression rejuvenated aged ASCs and reversed the harm caused by DUXAP10. Furthermore, Ras Association Domain Family Member 5 (RASSF5) was the target of miR-214-3p and was upregulated in aged ASCs. Overexpressing DUXAP10 and inhibiting miR-214-3p both enhanced RASSF5 content in ASCs, while DUXAP10 knockdown promoted the therapeutic ability of aged ASCs for skin wound healing. Overall, this study offers new insights into the mechanism of age-related ASC dysfunction and names DUXAP10 and miR-214-3p as potential targets for energizing aged stem cells.


Subject(s)
Adipose Tissue , MicroRNAs , RNA, Long Noncoding , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue/cytology , Stem Cells/metabolism , Stem Cells/cytology , Cellular Senescence , Rejuvenation/physiology , Cell Proliferation , Gene Knockdown Techniques
9.
Environ Res ; 251(Pt 1): 118566, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38447606

ABSTRACT

Both g-C3N4 and Bi2O2CO3 are good photocatalysts for the removal of antibiotic pollutants, but their morphological modulation and catalytic performance need to be further improved. In this study, the calcination-hydrothermal method is used to prepare a O-g-C3N4@Bi2O2CO3 (CN@BCO) composite photocatalyst from dicyandiamide and bismuth nitrate. The prepared catalyst is characterized through various methods, including X-ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the effects of different parameters, such as catalyst concentration and initial pH of the reaction solution, on its photocatalytic activity are investigated. The results show that the CN@BCO sample achieves an optimal degradation rate of 98.1% for tetracycline hydrochloride (TCH) with a concentration of 20 mg/L and a removal rate of 69.4% for total organic carbon (TOC) at 40 min. The quenching experiments show that ·O2-, h+, and ·OH participate in the photocatalytic process, with ·O2- being the most dominant active species. The toxicity of the predicted TCH degradation intermediates is analyzed using Toxicity Estimation Software Tool (TEST). Overall, the CN@BCO composite exhibits excellent photocatalytic performance, making it a promising candidate for environmental purification and wastewater treatment.


Subject(s)
Bismuth , Tetracycline , Wastewater , Water Pollutants, Chemical , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Bismuth/chemistry , Catalysis , Anti-Bacterial Agents/chemistry , Nanowires/chemistry , Nitrogen Compounds/chemistry , Nitriles/chemistry , Porosity , Graphite
10.
J Hazard Mater ; 469: 134023, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492393

ABSTRACT

Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Fluorides/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Minerals/analysis , Groundwater/chemistry , Isotopes/analysis
11.
iScience ; 27(3): 109152, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384833

ABSTRACT

HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.

12.
Biol Open ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38315073

ABSTRACT

Adipose-derived stem cells (ADSCs) have been widely applied in translational and regenerative medicine. During aging, there is a recognized functional decline in ADSCs, which compromises their therapeutic effectiveness. Currently, the mechanisms of aging-induced stem cell dysfunction remain unclear, hence there is a need to elucidate these mechanisms and propose strategies for reversing this functional impairment. In this study, we found that ADSCs isolated from old donors (O-ADSCs) presented inferior phenotypes and decreased miR-145-5p levels compared to those from young donors (Y-ADSCs). To interrogate the role of miR-145-5p in ADSCs, gain- and loss-of-function assays were performed. The results indicated that miR-145-5p overexpression in O-ADSCs promoted cellular proliferation and migration, while reducing cell senescence. Further study demonstrated that miR-145-5p could regulate ADSCs function by targeting bone morphogenetic protein binding endothelial cell precursor-derived regulator (BMPER), which is a crucial modulator in angiogenesis. Moreover, in vivo experiments showed that miR-145-5p-overexpressing O-ADSCs accelerated wound healing by promoting wound re-epithelialization and angiogenesis. Collectively, this study indicates that miR-145-5p works as a positive regulator for optimizing O-ADSCs function, and may be a novel therapeutic target for restoring aging-associated impairments in stem cell function.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Adipocytes , Stem Cells/metabolism , Endothelial Cells/metabolism , Wound Healing/genetics
13.
Ann Med ; 56(1): 2313680, 2024 12.
Article in English | MEDLINE | ID: mdl-38335557

ABSTRACT

PURPOSE: To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS: A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS: There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-ß1 (TGF-ß1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-ß1, TGF-ßR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-ß1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS: TGF-ß1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.


Subject(s)
Macrophages , Transforming Growth Factor beta1 , Animals , Humans , Rabbits , Collagen , Culture Media, Conditioned , Fibrosis , Macrophages/metabolism , Silicones , Transforming Growth Factor beta1/metabolism , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
14.
J Econ Entomol ; 117(2): 435-447, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38253912

ABSTRACT

Understanding the nutritional interplay among plants, pests, and natural enemies is essential for sustainable pest management. Enhancing the efficiency of natural enemies, such as Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) is critical, and exploiting herbivore-induced plant volatiles (HIPVs) offers a promising approach. However, N. californicus has rarely been reported to utilize HIPVs to improve their biological control capabilities. Our research revealed a significant difference in the diversity of volatile compounds detected in clean Citrus reticulata Blanco leaves compared to those in C. reticulata leaves infested with Panonychus citri (McGregor) (Acari: Tetranychidae), regardless of mite presence. This suggests that P. citri infestation induces a wide array of HIPVs in C. reticulata leaves. We conducted olfactory behavioral assays to evaluate the response of N. californicus to synthetic HIPVs. Results revealed that linalool (1.00 mg/mL), 2,2,4-trimethylpentane (10.0 mg/mL), undecylcyclohexane (1.00 mg/mL), and (+)-dibenzoyl-L-tartaric anhydride (10.0 mg/mL) significantly attracted N. californicus while pentadecanal (1.00 mg/mL) significantly deterred it. A 3-component blend of linalool, undecylcyclohexane, and (+)-dibenzoyl-L-tartaric anhydride was better than other combinations in attracting N. californicus. This combination provided the basis for developing an attractant for N. californicus, facilitating the rate of its dispersal to enhance its biological control of pests. Consequently, this research offers vital insights into improving the sustainable pest control potential of predatory mites.


Subject(s)
Acyclic Monoterpenes , Citrus , Mite Infestations , Tetranychidae , Animals , Tetranychidae/physiology , Herbivory , Predatory Behavior , Pest Control, Biological/methods , Anhydrides
15.
BMC Cardiovasc Disord ; 24(1): 71, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267845

ABSTRACT

BACKGROUND: As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS: A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS: In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS: BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.


Subject(s)
Coronary Artery Disease , MicroRNAs , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , RNA, Circular/genetics , Leukocytes, Mononuclear , Computational Biology , RNA, Messenger/genetics , Adaptor Proteins, Signal Transducing , MicroRNAs/genetics
16.
Adv Mater ; : e2310174, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38245861

ABSTRACT

Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.

17.
World J Emerg Med ; 15(1): 10-15, 2024.
Article in English | MEDLINE | ID: mdl-38188550

ABSTRACT

BACKGROUND: Resuscitative endovascular balloon occlusion of the aorta (REBOA) can temporarily control traumatic bleeding. However, its prolonged use potentially leads to ischemia-reperfusion injury (IRI). Partial REBOA (pREBOA) can alleviate ischemic burden; however, its security and effectiveness prior to operative hemorrhage control remains unknown. Hence, we aimed to estimate the efficacy of pREBOA in a swine model of liver injury using an experimental sliding-chamber ballistic gun. METHODS: Twenty Landrace pigs were randomized into control (no aortic occlusion) (n=5), intervention with complete REBOA (cREBOA) (n=5), continuous pREBOA (C-pREBOA) (n=5), and sequential pREBOA (S-pREBOA) (n=5) groups. In the cREBOA and C-pREBOA groups, the balloon was inflated for 60 min. The hemodynamic and laboratory values were compared at various observation time points. Tissue samples immediately after animal euthanasia from the myocardium, liver, kidneys, and duodenum were collected for histological assessment using hematoxylin and eosin staining. RESULTS: Compared with the control group, the survival rate of the REBOA groups was prominently improved (all P<0.05). The total volume of blood loss was markedly lower in the cREBOA group (493.14±127.31 mL) compared with other groups (P<0.01). The pH was significantly lower at 180 min in the cREBOA and S-pREBOA groups (P<0.05). At 120 min, the S-pREBOA group showed higher alanine aminotransferase (P<0.05) but lower blood urea nitrogen compared with the cREBOA group (P<0.05). CONCLUSION: In this trauma model with liver injury, a 60-minute pREBOA resulted in improved survival rate and was effective in maintaining reliable aortic pressure, despite persistent hemorrhage. Extended tolerance time for aortic occlusion in Zone I for non-compressible torso hemorrhage was feasible with both continuous partial and sequential partial measures, and the significant improvement in the severity of acidosis and distal organ injury was observed in the sequential pREBOA.

18.
iScience ; 27(1): 108701, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38222108

ABSTRACT

Despite autophagy modulating tumor immunity in the tumor microenvironment (TME), the immunotherapeutic efficacy and potential mechanism of autophagy signature was not explicit. We manually curated an autophagy gene set and defined a pan-cancer autophagy signature by comparing malignant tissues and normal tissues in The Cancer Genome Atlas (TCGA) cohort. The pan-cancer autophagy signature was derived from T proliferating cells as demonstrated in multiple single-cell RNA sequencing (scRNA-seq) datasets. The pan-cancer autophagy signature could influence the cell-cell interactions in the TME and predict the responsiveness of immune checkpoint inhibitors (ICIs) in the metastatic renal cell carcinoma, non-small cell lung cancer, bladder cancer, and melanoma cohorts. Metabolism inactivation accompanied with dysregulation of autophagy was investigated with transcriptomic and proteomic data. The immunotherapeutic predictive role and mechanism regulation of the autophagy signature was validated in an in-house cohort. Our study provides valuable insights into the mechanisms of ICI resistance.

19.
Aging (Albany NY) ; 16(3): 2362-2384, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38284886

ABSTRACT

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.


Subject(s)
Drugs, Chinese Herbal , Emodin , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Emodin/pharmacology , Emodin/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Lipid Droplets , Signal Transduction
20.
Emotion ; 24(2): 397-411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37616109

ABSTRACT

The COVID-19 pandemic presents challenges to psychological well-being, but how can we predict when people suffer or cope during sustained stress? Here, we test the prediction that specific types of momentary emotional experiences are differently linked to psychological well-being during the pandemic. Study 1 used survey data collected from 24,221 participants in 51 countries during the COVID-19 outbreak. We show that, across countries, well-being is linked to individuals' recent emotional experiences, including calm, hope, anxiety, loneliness, and sadness. Consistent results are found in two age, sex, and ethnicity-representative samples in the United Kingdom (n = 971) and the United States (n = 961) with preregistered analyses (Study 2). A prospective 30-day daily diary study conducted in the United Kingdom (n = 110) confirms the key role of these five emotions and demonstrates that emotional experiences precede changes in well-being (Study 3). Our findings highlight differential relationships between specific types of momentary emotional experiences and well-being and point to the cultivation of calm and hope as candidate routes for well-being interventions during periods of sustained stress. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
COVID-19 , Pandemics , Humans , Psychological Well-Being , Prospective Studies , Emotions
SELECTION OF CITATIONS
SEARCH DETAIL
...