Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
Circulation ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726666

ABSTRACT

BACKGROUND: G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS: Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS: Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS: Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.

2.
Zookeys ; 1197: 183-196, 2024.
Article in English | MEDLINE | ID: mdl-38725537

ABSTRACT

Study of divergence of freshwater fish populations between island and adjacent mainland areas can shed light on the phylogeographical relationships of these regions. Neodontobutishainanensis is a freshwater fish species restricted to Hainan Island and in Guangdong and Guangxi provinces in the southern mainland China. We examine the phylogenetic relationship and population structure of N.hainanensis based on 3,176 nuclear loci using a gene-capture method. STRUCTURE analysis and principal coordinate analyses (PCA) indicate that populations from Guangdong, Guangxi and Hainan are each distinct, except that some individuals of the Guangdong population share minor genetic components with individuals of the Guangxi population. In the concatenated gene tree, the Hainan population is grouped with the Guangdong population, but the coalescent tree groups the Hainan population as the sister to the Guangxi population. Finally, coalescent simulations confirmed the divergence pattern supported by the coalescent tree and revealed a one-way introgression from the Guangxi population to the Guangdong population, which can explain the discordant results supported by the concatenated and coalescent phylogenetic analyses. Due to recent decline of N.hainanensis populations and the genetic patterns in this species, as revealed in this study, the populations in the three areas should be treated as separate conservation units.

3.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732163

ABSTRACT

The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.


Subject(s)
Urodela , Animals , Urodela/genetics , China , Endangered Species , DNA, Environmental/genetics , DNA, Environmental/analysis , DNA, Mitochondrial/genetics , Genome, Mitochondrial
4.
Mol Pain ; 20: 17448069241226960, 2024.
Article in English | MEDLINE | ID: mdl-38172075

ABSTRACT

Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.


Subject(s)
Analgesics, Opioid , Hyperalgesia , Rats , Male , Animals , Hyperalgesia/metabolism , Analgesics, Opioid/metabolism , Rats, Sprague-Dawley , Amygdala/metabolism , Pain/metabolism , Fentanyl , Prefrontal Cortex/metabolism
5.
Arch Insect Biochem Physiol ; 115(1): e22067, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014568

ABSTRACT

Cricotopus is a large and diverse genus of non-biting midges composed of several subgenera. Complete mitogenome sequences are available for very few Cricotopus species. The subgenus Pseudocricotopus unites species with unusual morphological structures in adult male and pupal stages, however, molecular methods are needed to verify the placement of this subgenus within Cricotopus. We obtained mitogenomes of C. (Pseudocricotopus) cf. montanus and nine other Cricotopus species for phylogenetic analysis, coupled with two Rheocricotopus species and one Synorthocladius species as outgroups. The structure of the mitogenome was similar among these Cricotopus species, exhibiting A+T bias and retaining ancestral gene order. Mutation rate, estimated as Ka/Ks, varied among genes, and was highest for ATP8 and lowest for COI. The phylogenetic relationships among species of Cricotopus, Rheocricotopus and Synorthocladius was reconstructed using Bayesian inference and maximum likelihood estimation. The phylogenetic trees confirmed placement of subgenus Pseudocricotopus, represented by Cricotopus cf. montanus, within Cricotopus. Our study increases the library of chironomid mitogenomes and provides insight into the properties of their constituent genes.


Subject(s)
Chironomidae , Genome, Mitochondrial , Animals , Chironomidae/genetics , Chironomidae/anatomy & histology , Phylogeny , Bayes Theorem , Pupa
6.
Article in English | MEDLINE | ID: mdl-37885106

ABSTRACT

BACKGROUND: Excessive insulin is the leading cause of metabolic syndromes besides hyperinsulinemia. Insulin-lowering therapeutic peptides have been poorly studied and warrant urgent attention. OBJECTIVE: The main purpose of this study, was to introduce a novel peptide COX52-69 that was initially isolated from the porcine small intestine and possessed the ability to inhibit insulin secretion under high-glucose conditions by modulating large conductance Ca2+-activated K+ channels (BK channels) activity. METHODS AND RESULTS: Enzyme-linked immunosorbent assay results indicate that COX52-69 supressed insulin release induced by high glucose levels in pancreatic islets and animal models. Furthermore, electrophysiological data demonstrated that COX52-69 can increase BK channel currents and hyperpolarize cell membranes. Thus, cell excitability decreased, corresponding to a reduction in insulin secretion. CONCLUSION: Our study provides a novel approach to modulate high glucose-stimulated insulin secretion in patients with hyperinsulinemia.

7.
Comput Biol Med ; 165: 107355, 2023 10.
Article in English | MEDLINE | ID: mdl-37639767

ABSTRACT

Distinguishing non-coding RNAs (ncRNAs) from coding RNAs is very important in bioinformatics. Although many methods have been proposed for solving this task, it remains highly challenging to further improve the accuracy of ncRNA identification. In this paper, we propose a coding potential predictor using feature representation learning based on pseudo RNA sequences named CPPFLPS. In this method, we use the pseudo RNA sequences generated by simulating RNA sequence mutations as new samples for data augmentation, and six string operations simulating RNA sequence mutations are considered: base replacement, base insertion, base deletion, subsequence reversion, subsequence repetition and subsequence deletion. In the feature representation learning framework, different types of pseudo RNA sequences are added to the training set to form new training sets that can be used to train baseline classifiers, thus obtaining baseline models. The resulting labels of these baseline models are used as feature vectors to represent RNA sequences, and the resulting feature vectors acquired after feature selection are used to train a predictive model for distinguishing ncRNAs from coding RNAs. Our method achieves better performance compared with that of existing state-of-the-art methods. The implementation of the proposed method is available at https://github.com/chenxgscuec/CPPFLPS.


Subject(s)
Computational Biology , RNA, Untranslated , Base Sequence , RNA, Untranslated/genetics , Computational Biology/methods
8.
Mol Phylogenet Evol ; 186: 107871, 2023 09.
Article in English | MEDLINE | ID: mdl-37422179

ABSTRACT

The genus Odontobutis is a group of freshwater fishes endemic to East Asia. Phylogenetic relationships among the Odontobutis species have never been fully tested due to incomplete taxon sampling and that molecular data have not been collected in many Odontobutis species. In the present study, we sampled 51 specimens from all known eight Odontobutis species with two outgroups (Perccottus glenii and Neodontobutis hainanensis). We collected sequence data of 4434 single-copy nuclear coding loci using gene capture and Illumina sequencing. A robust phylogeny of the Odontobutis with many individuals for each species was built, supporting the current taxonomy that all extant Odontobutis species are valid. The two species from Japan (O. hikimius + O. obscurus) formed an independent clade sister to the "continental odontobutids", whereas the species from southern China (O. sinensis + O. haifengensis) separated from the rest species of the genus. Surprisingly species from the lower reaches of the Yangtze River (O. potamophilus) was more closely related to species from the Korean Peninsula and northeastern China than to the middle reaches of the Yangtze River, such that their relationship was ((O. sinensis + O. haifengensis)(O. platycephala + (O. yaluensis + (O. potamophilus + O. interruptus)))). Divergence time among the Odontobutis was estimated using 100 most clock-like loci and three fossil calibration points. The crown group of the Odontobutis was estimated at 9.0 Ma during the late Miocene (5.6-12.7 Ma, 95% HPDs). Ancestral range of the genus was reconstructed using Reconstruct Ancestral States in Phylogenies (RASP) and BioGeoBEARS. The result suggested that the common ancestor of modern Odontobutis probably was distributed in Japan, southern China or the Korean Peninsula. A series of geographical events in East Asia since the late Miocene, such as the opening of the Japan/East Sea, rapid uplift of the Tibetan Plateau and climate change in the northern region of the Yellow River might account for diversification and current distribution pattern of the Odontobutis.


Subject(s)
Perciformes , Animals , Phylogeny , Sequence Analysis, DNA , Asia, Eastern , Fresh Water , Phylogeography
9.
G3 (Bethesda) ; 13(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37157845

ABSTRACT

Siniperca undulata and S. obscura (Centrarchiformes: Sinipercidae) are small Chinese perches, living in creeks and streams in southern China. While they have sympatric distribution and occupy similar macrohabitat, their body sizes and ecological niches have many differences. Determining the genome sequences of S. undulata and S. obscura would provide us an essential data set for better understanding their genetic makeup and differences that may play important roles in their adaptation to different niches. We determined the genome sequences of both S. undulata and S. obscura using 10× genomics technology and the next-generation sequencing. The assembled genomes of S. undulata and S. obscura were 744 and 733 Mb, respectively. Gene family analysis revealed that there were no overlap between S. undulata and S. obscura in terms of rapid expanding and rapid contracting genes families, which were related to growth, immunity, and mobility. Positive selection analyses also cooperated that the function of selected genes involve growth, athletic ability, and immunity, which may explain the preference of different niches by S. undulata and S. obscura. Pairwise sequentially Markovian coalescent analyses for the two species suggested that populations of both S. undulata and S. obscura showed a rising trend between 90 and 70 Ka probably due to the mild environment during the last interglacial period. A stage of population shrinking occurred from 70 to 20 Ka, which was in with the Tali glacial period in eastern China (57-16 Ka).


Subject(s)
Perches , Animals , China , Genome , Genomics , Perches/genetics
10.
Zookeys ; 1153: 1-13, 2023.
Article in English | MEDLINE | ID: mdl-37234483

ABSTRACT

Microdousamblyrhynchos, a new species, the second one in the genus, from the family Odontobutidae, is described from the Hongshui River, in the upper reaches of the Xijiang River of the Pearl River drainage, Baise City, Guangxi Zhuang Autonomous Region, southern China. This species is distinguished from its only congener, M.chalmersi, by the blunt snout (vs. pointed); mean snout length/head length ratio 0.27 (vs. 0.3); eye not extending outward (vs. protruding); mean interorbital width/head length ratio 0.25 (vs. 0.11). Additionally, the results of molecular phylogenetic analysis confirmed that M.amblyrhynchossp. nov. is distinct from its sister species, M.chalmersi.

11.
Mol Phylogenet Evol ; 183: 107775, 2023 06.
Article in English | MEDLINE | ID: mdl-36972794

ABSTRACT

The dynamic climate history that drove sea level fluctuation during past glacial periods mediated the movement of organisms between Asia and North America via the Bering Land Bridge. Investigations of the biogeographic histories of small mammals and their parasites demonstrate facets of a complex history of episodic geographic colonization and refugial isolation that structured diversity across the Holarctic. We use a large multi-locus nuclear DNA sequence dataset to robustly resolve relationships within the cestode genus Arostrilepis (Cyclophyllidea: Hymenolepididae), a widespread parasite of predominantly arvicoline rodents (voles, lemmings). Using this phylogeny, we confirm that several Asian Arostrilepis lineages colonized North America during up to four distinct glacial periods in association with different rodent hosts, consistent with taxon-pulse dynamics. A previously inferred westward dispersal across the land bridge is rejected. We also refine interpretations of past host colonization, providing evidence for several distinct episodes of expanding host range, which probably contributed to diversification by Arostrilepis. Finally, Arostrilepis is shown to be paraphyletic with respect to Hymenandrya thomomyis, a parasite of pocket gophers, confirming that ancient Arostrilepis species colonized new host lineages upon arriving in North America.


Subject(s)
Cestoda , Parasites , Animals , Phylogeny , Cestoda/genetics , North America , Climate , Mammals , Arvicolinae
12.
Protein Pept Lett ; 30(4): 275-279, 2023.
Article in English | MEDLINE | ID: mdl-36799422

ABSTRACT

Protein and peptide drugs have been considered to be valuable for treating disease for many years, capturing more and more of the attention of researchers. Previously, we found a short peptide from the porcine intestine named COX52-69, which could simultaneously lower blood glucose and insulin response after intraperitoneal injection. And thus, it showed a potential to counter type II diabetes without leading to insulin resistance, mainly caused by high insulin levels in the blood. However, this molecule is not stable in the digestive system and cannot be used via oral administration. Here we employed the circularization technique to modify the peptide and tested its pharmacokinetics.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Swine , Diabetes Mellitus, Type 2/metabolism , Peptides, Cyclic/therapeutic use , Insulin/metabolism , Blood Glucose/metabolism , Peptides/therapeutic use , Administration, Oral
13.
Ecol Evol ; 13(1): e9745, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36644701

ABSTRACT

A combination of short-insert paired-ended and mate-pair libraries of large insert sizes is used as a standard method to generate genome assemblies with high contiguity. The third-generation sequencing techniques also are used to improve the quality of assembled genomes. However, both mate-pair libraries and the third-generation libraries require high-molecular-weight DNA, making the use of these libraries inappropriate for samples with only degraded DNA. An in silico method that generates mate-pair libraries using a reference genome was devised for the task of assembling target genomes. Although the contiguity and completeness of assembled genomes were significantly improved by this method, a high level of errors manifested in the assembly, further to which the methods for using reference genomes, was not optimized. Here, we tested different strategies for using reference genomes to generate in silico mate-pairs. The results showed that using a closely related reference genome from the same genus was more effective than using divergent references. Conservation of in silico mate-pairs by comparing two references and using those to guide genome assembly reduced the number of misassemblies (18.6%-46.1%) and increased the contiguity of assembled genomes (9.7%-70.7%), while maintaining gene completeness at a level that was either similar or marginally lower than that obtained via the current method. Finally, we developed a pipeline of the optimized in silico method and compared it with another reference-guided assembler, RagTag. We found that RagTag produced longer scaffolds (17.8 Mbp vs 3.0 Mbp), but resulted in a much higher misassembly rate (85.68%) than our optimized in silico mate-pair method. This optimized in silico pipeline developed in this study should facilitate further studies on genomics, population genetics, and conservation of endangered species.

14.
J Hered ; 114(1): 68-73, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36223282

ABSTRACT

The Laotian shad (Tenualosa thibaudeaui) belongs to the family Clupeidae and is mainly distributed across Lao PRD, Cambodia, and northern Thailand. Due to overfishing and dam reconstruction, the Laotian shad is on the verge of extinction and currently listed as vulnerable by the IUCN. Nanopore and Illumina sequencing data were integrated to generate the first high-quality genome assembly for T. thibaudeaui. The assembled genome was 638 Mb in size, including 228 scaffolds with a N50 value of 16.6 Mb. BUSCO analysis revealed the completeness of the assembly to be more than 96%. A total of 24,810 protein-coding genes were predicted. According to the pairwise sequentially Markovian coalescent analysis, the effective population size of the Laotian shad sharply declined from 3 Mya to 20 Kya. We found a significant ratio in contraction of gene families that may reflect secondary gene loss. Our high-quality genome assembly of the Laotian shad will provide a valuable resource for future research in conservation genetics, as well as for investigating the phylogenetics and comparative genomics of shads.


Subject(s)
Conservation of Natural Resources , Rivers , Animals , Fisheries , Genomics , Genome , Fishes/genetics
15.
Biochim Biophys Acta Gen Subj ; 1867(1): 130251, 2023 01.
Article in English | MEDLINE | ID: mdl-36244576

ABSTRACT

CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T. thermophila), a model organism of the aquatic environment, and performed metabolomics experiments. Before the omics experiment was conducted, QDs were found to induce inhibition of cell proliferation, and reactive oxygen species (ROS) production along with Propidium iodide labeled cell membrane damage indicated oxidative stress stimulation. In addition, mitochondrial ultrastructure alteration of T. thermophila was also confirmed by Transmission Electron Microscope results after 48 h of exposure to QDs. Further results of metabolomics detection showed that 0.1 µg/mL QDs could disturb cell physiological and metabolic metabolism characterized by 18 significant metabolite changes, of which twelve metabolites improved and three decreased significantly compared to the control. Kyoto Encyclopedia of Genes and Genomes analysis showed that these metabolites were involved in the ATP-binding cassette transporter and purine metabolism pathways, both of which respond to ROS-induced cell membrane damage. In addition, purine metabolism weakness might also reflect mitochondrial dysfunction associated with energy metabolism and transport abnormalities. This research provides deep insight into the potential risks of quantum dots in aquatic ecosystems.


Subject(s)
Cadmium Compounds , Quantum Dots , Selenium Compounds , Tetrahymena thermophila , Quantum Dots/toxicity , Cadmium Compounds/toxicity , Cadmium Compounds/chemistry , Selenium Compounds/pharmacology , Tetrahymena thermophila/metabolism , Reactive Oxygen Species/metabolism , Ecosystem , Oxidative Stress , Water , Purines , Lipids
16.
Cell Mol Neurobiol ; 43(3): 1401-1412, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35798932

ABSTRACT

The underlying mechanisms of opioid-induced hyperalgesia (OIH) remain unclear. Herein, we found that the protein expression of metabotropic glutamate receptor 1 (mGluR1) was significantly increased in the right but not in the left laterocapsular division of central nucleus of the amygdala (CeLC) in OIH rats. In CeLC neurons, the frequency and the amplitude of mini-excitatory postsynaptic currents (mEPSCs) were significantly increased in fentanyl group which were decreased by acute application of a mGluR1 antagonist, A841720. Finally, the behavioral hypersensitivity could be reversed by A841720 microinjection into the right CeLC. These results show that the right CeLC mGluR1 is an important factor associated with OIH that enhances synaptic transmission and could be a potential drug target to alleviate fentanyl-induced hyperalgesia.


Subject(s)
Hyperalgesia , Receptors, Metabotropic Glutamate , Animals , Rats , Amygdala/metabolism , Analgesics, Opioid/pharmacology , Fentanyl , Hyperalgesia/chemically induced , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Synaptic Transmission
17.
Insects ; 13(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555075

ABSTRACT

(1) Background: Chironomids are biological indicators, playing an important role in monitoring and assessing the changes in water ecosystems. Mitochondrial genomes have been widely applied as a molecular marker to analyze the taxonomy and phylogeny of insects. However, knowledge of the mitogenomes of Chironomus species is scarce at present, which limits our understanding of the evolutionary relationships among Chironomus. (2) Methods: In our study, the mitogenomes and their basic structure of 12 Chironomus species and one Microchironomus species were newly sequenced. Combined with reported mitogenomes, a total of 15 mitogenomes of Chironomus were selected for a comparative mitogenomic analysis and phylogenetic reconstruction of Chironomus. (3) Results: Each mitogenome of the Chironomus species has the typical 37 genes and a control region. The basic structure of the whole mitogenomes of Chironomus species is relatively conservative, and the genetic arrangements stay the same as the ancestral mitogenome. (4) Conclusions: Our study enriches the library of mitogenomes of chironomids and provides a valuable resource for understanding the evolutionary history of Chironomus.

18.
Sci Adv ; 8(37): eabl4642, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112682

ABSTRACT

Limb regeneration is a fascinating and medically interesting trait that has been well preserved in arthropod lineages, particularly in crustaceans. However, the molecular mechanisms underlying arthropod limb regeneration remain largely elusive. The Chinese mitten crab Eriocheir sinensis shows strong regenerative capacity, a trait that has likely allowed it to become a worldwide invasive species. Here, we report a chromosome-level genome of E. sinensis as well as large-scale transcriptome data during the limb regeneration process. Our results reveal that arthropod-specific genes involved in signal transduction, immune response, histone methylation, and cuticle development all play fundamental roles during the regeneration process. Particularly, Innexin2-mediated signal transduction likely facilitates the early stage of the regeneration process, while an effective crustacean-specific prophenoloxidase system (ProPo-AS) plays crucial roles in the initial immune response. Collectively, our findings uncover novel genetic pathways pertaining to arthropod limb regeneration and provide valuable resources for studies on regeneration from a comparative perspective.


Subject(s)
Histones , Transcriptome , China , Genome , Histones/genetics , Regeneration/genetics
19.
Zootaxa ; 5134(1): 113-124, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36101074

ABSTRACT

A new species, Neodontobutis lani (Odontobutidae) is described from the Zuojiang River, a tributary of the Xijiang River of the Pearl River basin, at Longzhou Town, Guangxi Zhuang Autonomous Region, Southern China. This species can be distinguished from other Neodontobutis species by following characters: anterior head flat, with interorbital width / eye diameter = 1.41.9 (vs. less than 1.4); several rows (vs. single row) of transforming ctenii on posterior edges of body scales; sensory papilla on lower jaw arranged in two oblong clusters (vs. two single lines). It can be distinguished from Odontobutis species by: separated right and left gill membrane (vs. joined); barbel-like projection present on sensory papillae. Molecular phylogenetic analysis of 2,076 nuclear coding loci indicates that N. lani is a sister species of N. hainanensis, the only Neodontobutis species that has been described from China.


Subject(s)
Perciformes , Animals , Cell Nucleus , China , Phylogeny , Rivers
20.
Mol Phylogenet Evol ; 175: 107590, 2022 10.
Article in English | MEDLINE | ID: mdl-35850406

ABSTRACT

The Clupeiformes, including among others herrings, anchovies, shads and menhadens are ecologically and commercially important, yet their phylogenetic relationships are still controversial. Previous classification of Clupeiformes were based on morphological characters or lack of synapomorphic characters. More recent studies based on molecular data as well as new morphological evidence are keeping challenging their phylogenetic relations and there is still no consensus on many interrelationships within the Clupeiformes. In this study, we collected nuclear sequence data from 4,434 single-copy protein coding loci using a gene-capture method. We obtained a robust phylogeny based on 1,165 filtered loci with less than 30 % missing data. Our major findings include: 1) reconfirmation of monophyly of the Clupeiformes, that is, Denticipitidae is sister to all other clupeiforms; 2) the polyphyletic nature of dussumieriids and early branching of Spratelloididae from all other clupeoids were confirmed using datasets curated for less missing data and more balanced base composition in the respective taxa. The next branching clade is the monophyletic Engraulidae. Pristigasteridae also is monophyletic, but it was nested in the previously defined "Clupeidae". Within Pristigasteridae there is no support for monophyletic Pelloninae. Chirocentrus is close to Dussumieria and not to engraulids. The miniaturized Sundasalanx is placed close to the ehiravine Clupeonella, however, with a relatively deep split. The genus Clupea, is not part of the diverse "Clupeidae", but part of a clade containing additionally Sprattus and Etrumeus. Within the crown group clades, Alosidae and Dorosomatidae are retrieved as sister clades. Based on new fossil calibration points, we found that major lineages of the clupeiforms diverged in the late Cretaceous and early Paleogene. The extinction event at the end of the Cretaceous may have created ecological niches, which could have fueled the diversification of clupeiform fishes. Based on the strong evidence of the present study, we propose an updated classification of Clupeiformes consisting of ten families: Denticipitidae; Spratelloididae; Engraulidae (Engraulinae + Coiliinae); Clupeidae; Chirocentridae; Dussumieriidae; Pristigasteridae; Ehiravidae; Alosidae, Dorosomatidae.


Subject(s)
Fishes , Fossils , Animals , Exons , Fishes/genetics , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...