Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(21): 4246-4256, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747973

ABSTRACT

The self-oscillation of objects that perform continuous and periodic motions upon unchanging and constant stimuli is highly important for intelligent actuators, advanced robotics, and biomedical machines. Liquid crystalline elastomer (LCE) materials are superior to traditional stimuli-responsive polymeric materials in the development of self-oscillators because of their reversible, large and anisotropic shape-changing ability, fast response ability and versatile structural design. In addition, fiber-shaped oscillators have attracted much interest due to their agility, flexibility and diverse oscillation modes. Herein, we present a strategy for fabricating fiber-shaped LCE self-oscillators using soft tubes as molds. Through the settlement of different configuration states of the soft tubes, the prepared fiber-shaped LCE oscillators can perform continuous rotational self-oscillation or up-and-down shifting self-oscillation under constant light stimuli, which are realized by photoinduced repetitive self-winding motion and self-waving motion, respectively. The mechanism of self-oscillating movements is attributed to the local temperature oscillation of LCE fibers caused by repetitive self-shadowing effects. LCE self-oscillators can operate stably over many oscillating cycles without obvious performance attenuation, revealing good robustness. Our work offers a versatile way by which LCE self-oscillators can be conveniently designed and fabricated in bulk and at low cost, and broadens the road for developing self-oscillating materials for biological robotics and health care machines.

2.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375413

ABSTRACT

Liquid crystal elastomers (LCEs) are shape-morphing materials whose large and reversible shape transformations are caused by the coupling between the mobile anisotropic properties of liquid crystal (LC) units and the rubber elastic of polymer networks. Their shape-changing behaviors under certain stimuli are largely directed by the LC orientation; therefore, various strategies have been developed to spatially modulate the LC alignments. However, most of these methods are limited as they require complex fabrication technologies or have intrinsic limitations in applicability. To address this issue, programmable complex shape changes in some LCE types, such as polysiloxane side-chain LCEs, thiol-acrylate main-chain LCEs, etc., were achieved by using a mechanical alignment programming process coupled with two-step crosslinking. Here, we report a polysiloxane main-chain LCE with programmable 2- and 3D shape-changing abilities that were created by mechanically programming the polydomain LCE with two crosslinking steps. The resulting LCEs exhibited a reversible thermal-induced shape transformation between the initial and programmed shapes due to the two-way memory between the first and second network structures. Our findings expand on the applications of LCE materials in actuators, soft robotics, and smart structures where arbitrary and easily programmed shape morphing is needed.

3.
Soft Matter ; 18(48): 9181-9196, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36437786

ABSTRACT

We explore obtaining different photo responses of liquid crystalline elastomer (LCE) materials through modulating the optical wavelengths in order to promote the development of precise photocontrol on LCE actuators, and thus study the effect of light-absorbing dyes with different absorption bands on the selective actuation of LCE materials. The dye-doped LCEs were prepared by incorporating special visible absorber dyes into thiol-acrylate main chain LCE (MC-LCE) matrices. The dyes showed photo actuation performance to LCEs due to the photothermal effects. But, every dye-doped LCE could be effectively actuated by light irradiation whose wavelength was inside its absorption band, but could not be effectively actuated by the light whose wavelength was beyond its absorption band. Wavelength selective actuation effects, no matter actuating deformation or actuating force, could be remarkably demonstrated by these dye-doped LCEs through filtering the same quasi-daylight source to be different wavelength bands. Our work opens up a significant way for the precise and convenient photo actuation of LCE actuators, while expanding the utilization potential of quasi-daylight, and further natural sunlight.

4.
Soft Matter ; 18(6): 1264-1274, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35044410

ABSTRACT

Liquid crystalline elastomer (LCE) materials have been developed and investigated for several decades. One important obstacle, which impedes the practical industrial application of LCE materials, is their modest robustness as actuator materials. In this work, we developed a LCE composite which was fabricated by incorporating eiderdown fibers into a polysiloxane-based main-chain LCE matrix. The eiderdown fibers were used as the flexible reinforcement phase suitable for the shape-morphing performance of LCE materials upon being stimulated. Due to the long fiber property, specific structure and surface characteristics of the eiderdown fibers, they constructed a reinforcement network in the LCE matrix and formed tight interfacial adhesion with the matrix. The LCE composite demonstrated enhanced actuation mechanical properties and robust actuation performance. Its actuation blocking stress and modulus were increased due to the reinforcement effect of the eiderdown fibers. The tensile strength and the performance of anti-fatigue failure under repeated actuation cycles and high loadings were greatly improved due to the crack-resisting effect and bridging effect of the eiderdown fibers. While other properties, such as the liquid crystalline phase structure, the stimulus deformation ratio, phase transition temperature of the LCE matrix, etc., did not deteriorate or change due to the high flexibility, thermal stability and chemical stability of the eiderdown fibers.

5.
ACS Appl Mater Interfaces ; 13(37): 44833-44843, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34499488

ABSTRACT

Photoactuated liquid crystalline elastomer (LCE) materials are gaining much attention in many application fields, but challenges for the precise modulation of their photoresponses still exist. Researchers have explored various optical parameters, such as polarization, intensity, and wavelength, to obtain differential responses. The development of photoactuated LCE materials with wavelength-selective responsiveness is more versatile and has attracted more interest, but such LCE materials are commonly prepared by incorporating different molecular chromophores or dyes into the LCE matrices. When the surface plasmon resonance (SPR) characteristic of nanometals, which can generate strong photothermal conversion, and the difference of SPR absorption wavelength bands of different nanometals are considered, a strategy of constructing wavelength-selective actuation of LCE materials by using the SPR photothermal effect can be demonstrated, as done herein. The LCE nanocomposites doped by nanogold or nanosilver were fabricated and exhibited good SPR absorption but in different wavelength bands of the visible spectrum range. They had strong actuation under light irradiation with the wavelengths being inside their respective absorption band but could not be effectively actuated by the light beyond their respective absorption band. A smart electronic device, implementing a hierarchical structured LCE nanocomposite doped by nanogold and nanosilver in different domains as the two-switch actuator, was prepared and capable of outputting different signals in response to the different wavelength bands filtered from a light source, which released the actuator from the restriction of light scanning direction or position. Our work provides new insights for the convenient and precise photoactuation of the LCE actuators.

6.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348761

ABSTRACT

The Ti3C2 nanosheet, as a new two-dimensional (2D) group, has been found to have attractive characteristics as material for electromagnetic shielding and energy storage. In this study, the nonlinear broadband absorption and ultrafast dynamics of the Ti3C2 nanosheet were investigated using nanosecond open-aperture Z-scan and transient absorption techniques. The mechanism of two-photon absorption (TPA) was revealed in the visible region (475-700 nm). At lower incident energies, nonlinear absorption could not happen. When the laser energy increased to 0.64 GW/cm2, electrons in the valence band could absorb two photons and jump to the conduction band, with TPA occurring, which meant that the sample exhibited reverse saturable absorption (RSA). In addition, when transient absorption was used to investigate the ultrafast carrier dynamics of the sample, it demonstrated that the relaxation contains a fast decay component and a slow one, which are obtained from electron-phonon and phonon-phonon interactions, respectively. Moreover, with the increasing pump fluence, the fast decay lifetime τ1 increased from 3.9 to 4.5 ps, and the slow one τ2 increased from 11.1 to 13.2 ps. These results show that the Ti3C2 nanosheet has potential applications in broadband optical limiters.

7.
Soft Matter ; 16(31): 7332-7341, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32685953

ABSTRACT

We present a method for actuating LCE materials by microwave radiation. The microwave actuation performance of a polysiloxane-based nematic liquid crystalline elastomer (LCE) was investigated. The microwave-material interaction caused a dipolar loss, which created a heating effect to trigger the nematic-isotropic transition of the LCE matrix, thus leading to the deformation actuation of the LCE material. This energy conversion from radiant energy to thermal energy provided a contactless pathway to actuate the LCE material without the aid of other components acting as energy converters. The LCE demonstrated rapid maximum contraction upon microwave irradiation, and this microwave-stimulated response was fully reversible when the microwave irradiation was switched off. More importantly, the microwave actuation exhibited superiority relative to photo-actuation, which is the usual method of contactless actuation. The microwaves can penetrate the opaque thick barriers to effectively actuate the LCE due to their strong penetrability; they can also penetrate multiple LCE samples and actuate them almost simultaneously. By taking advantage of the salient features of microwave actuation, a microwave detector system, implementing the LCE as an actuator material, was fabricated. This demonstrated the performance of monitoring microwave irradiation intensities with good sensitivity and convenient manipulation.

8.
Soft Matter ; 15(30): 6116-6126, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31286128

ABSTRACT

In this work, according to the characteristic of surface plasmon resonance (SPR) of metallic nanoparticles, we investigated the photo actuation performance of a liquid crystalline elastomer (LCE) nanocomposite with incorporated gold nanoparticles (nano-gold/LCE nanocomposite). The nano-gold/LCE nanocomposites were fabricated by incorporating gold nanoparticles into a polysiloxane-based LCE matrix via a novel experimental protocol, and characterized by a well-developed SPR absorption band in the visible spectrum range. The nano-gold/LCE nanocomposites demonstrated strong actuation upon irradiation with a quasi-daylight source; the reason lay in that the SPR response of gold nanoparticles performed efficient energy conversion from light energy to thermal energy, and thus offered an activation pathway for the nematic-isotropic transition of the LCE matrix. The nano-gold/LCE nanocomposites underwent rapid maximum axial contraction up to about one third of the original length under light irradiation, and this photo-stimulated muscle-like actuation was fully reversible via the on-off switching of the light source. The photo actuation properties of nano-gold/LCE nanocomposites with varying irradiation intensities and gold nanoparticle content were also investigated. In addition, the nano-gold/LCE nanocomposites demonstrated superior optical nonlinear properties, and revealed potential for the application area of mode-locking for laser technology.

9.
Polymers (Basel) ; 11(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018552

ABSTRACT

Crosslinked liquid crystalline polymers (CLCPs) containing azobenzene (AZO-CLCPs) are a type of promising material due to their significance in the design of light-driven smart actuators. Developing AZO-CLCP composites by incorporating AZO-CLCPs with other materials is an effective way of enhancing their practicability. Herein, we report an AZO-CLCP/CNT nanocomposite prepared by the in situ polymerization of diacrylates containing azobenzene chromophores on carbon nanotube (CNT) sheets. The liquid crystal phase structure of CLCP matrix was evidenced by the two-dimensional X-ray scattering. The prepared pure AZO-CLCP films and AZO-CLCP/CNT nanocomposite films demonstrated strong reversible photo-triggered deformation under the irradiation of UV light at 366 nm of wavelength, as a result of photo-induced isomerization of azobenzene moieties in the polymer network. But compared to pure AZO-CLCP films, the AZO-CLCP/CNT nanocomposite films could much more rapidly return to their initial shapes after the UV light irradiation was removed due to the elasticity effect of CNT sheets. The deformation behavior of AZO-CLCP/CNT nanocomposite films under the light irradiation was also different from that of the pure AZO-CLCP films due to the interfacial interaction between a polymer network and CNT sheet. Furthermore, incorporation of a CNT sheet remarkably increased the mechanical strength and robustness of the material. We also used this AZO-CLCP/CNT nanocomposite as a microvalve membrane actuator, which can be controlled by light, for a conceptual device of a microfluidic system. The results showed that this AZO-CLCP/CNT nanocomposite may have great potential in smart actuator applications for biological engineering, medical treatment, environment detection and microelectromechanical systems (MEMS), etc.

10.
Polymers (Basel) ; 12(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906200

ABSTRACT

We studied the effect of visible absorber dyes on the photo-actuation performances of liquid crystalline elastomer (LCE) materials under quasi-daylight irradiation. The dye-doped LCE materials were prepared through infiltrating visible absorber dyes into a polysiloxane-based LCE matrix based on its solvent-swollen characteristic. They demonstrated well absorption properties in visible spectrum range and performed strong actuation upon the irradiation from quasi-daylight source, thus indicating that the presence of visible absorber dyes effectively sensitized the LCE materials to light irradiation since the light energy was absorbed by the dyes and then converted into heat to trigger the phase change of LCE matrix. The photo-actuation properties of dye-doped LCE materials with different visible absorber dyes, varied dye contents, and irradiation intensities were investigated. It was shown that the visible absorber dyes with different absorption bands created different photo-actuation performances of LCE materials, the one whose absorption band is near the intensity peak position of quasi-daylight spectrum created the optimum photo-actuation performance. The result disclosed a valuable light utilization way for photo-controlled LCE materials since it revealed that a light-absorbing dye, whose absorption band is in the high intensity region of light spectrum, is capable of effectively utilizing light energy to drive the actuation of LCE materials.

11.
RSC Adv ; 8(9): 4857-4866, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-35539513

ABSTRACT

Liquid crystal elastomers (LCEs) are important smart materials that can undergo reversible deformation in response to liquid crystal (LC) phase transitions. A low threshold temperature for LC phase transition is advantageous because the LCE material can be more conveniently actuated by the applied stimulus. In this work, we investigated the effect of a nonliquid crystal chain on the reduction of threshold temperature of the LC phase transition by linking a nonliquid crystal side chain, 4-methoxyphenyl-1-hexenyloxy (MOCH3), to the network backbone of a classical polysiloxane-based side-chain nematic LCE. The nematic-isotropic transition temperature (T ni) of the MOCH3 incorporated nematic LCE was lower than that of the normal nematic LCE without the incorporation of a nonliquid crystal chain by about 27 °C. Compared to the normal nematic LCE or its nanocomposite, the MOCH3 incorporated nematic LCE or its nanocomposite demonstrated more rapid thermo-actuated deformation or photo-actuated deformation, and can be actuated to attain full axial contraction at an obviously lowered temperature or by light with obviously lowered intensity, while the maximum contraction ratio basically did not vary. These research results indicate that some nonliquid crystal chains show potential for improving the characteristics and enhancing the application significance of LCE materials.

12.
Adv Mater ; 25(30): 4093-6, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23740719

ABSTRACT

Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Microelectrodes , Nanoparticles/chemistry , Polyvinyls/chemistry , Solar Energy , Zinc Oxide/chemistry , Coloring Agents/radiation effects , Energy Transfer , Equipment Design , Equipment Failure Analysis , Materials Testing , Nanoparticles/radiation effects , Zinc Oxide/radiation effects
13.
Nanoscale ; 5(12): 5225-40, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23648966

ABSTRACT

Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.


Subject(s)
Elastomers/chemistry , Liquid Crystals/chemistry , Artificial Organs , Electricity , Light , Magnetic Fields , Micro-Electrical-Mechanical Systems
14.
Macromol Rapid Commun ; 30(22): 1928-35, 2009 Nov 19.
Article in English | MEDLINE | ID: mdl-21638477

ABSTRACT

The synthesis of an oriented liquid-crystalline photoresponsive polymer, prepared by polymerization of mono- and di-acrylates, both of which contain azobenzene chromophores, is reported. The prepared free-standing polymer film shows strong reversible photoinduced deformation upon exposure to unpolarized UV light at 366 nm, as a result of an optically induced isomeric change of the azobenzene moieties in the polymer network. The synthesis process is relatively simple and more efficient compared to conventional ones, and can be used to synthesize other liquid-crystalline photoresponsive polymers. The use of this photoresponsive polymer film as an optical high-pass/low-pass switch under UV or natural light irradiation for a laser beam is demonstrated. This photoresponsive polymer may have applications in robotic systems, artificial muscles, and actuators in microelectromechanical systems (MEMS) and labs on chips.

SELECTION OF CITATIONS
SEARCH DETAIL
...