Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Article in English | MEDLINE | ID: mdl-38833391

ABSTRACT

Accurately distinguishing between background and anomalous objects within hyperspectral images poses a significant challenge. The primary obstacle lies in the inadequate modeling of prior knowledge, leading to a performance bottleneck in hyperspectral anomaly detection (HAD). In response to this challenge, we put forth a groundbreaking coupling paradigm that combines model-driven low-rank representation (LRR) methods with data-driven deep learning techniques by learning disentangled priors (LDP). LDP seeks to capture complete priors for effectively modeling the background, thereby extracting anomalies from hyperspectral images more accurately. LDP follows a model-driven deep unfolding architecture, where the prior knowledge is separated into the explicit low-rank prior formulated by expert knowledge and implicit learnable priors by means of deep networks. The internal relationships between explicit and implicit priors within LDP are elegantly modeled through a skip residual connection. Furthermore, we provide a mathematical proof of the convergence of our proposed model. Our experiments, conducted on multiple widely recognized datasets, demonstrate that LDP surpasses most of the current advanced HAD techniques, exceling in both detection performance and generalization capability.

2.
Article in English | MEDLINE | ID: mdl-38742455

ABSTRACT

BACKGROUND: Error analysis plays a crucial role in clinical concept extraction, a fundamental subtask within clinical natural language processing (NLP). The process typically involves a manual review of error types, such as contextual and linguistic factors contributing to their occurrence, and the identification of underlying causes to refine the NLP model and improve its performance. Conducting error analysis can be complex, requiring a combination of NLP expertise and domain-specific knowledge. Due to the high heterogeneity of electronic health record (EHR) settings across different institutions, challenges may arise when attempting to standardize and reproduce the error analysis process. OBJECTIVES: This study aims to facilitate a collaborative effort to establish common definitions and taxonomies for capturing diverse error types, fostering community consensus on error analysis for clinical concept extraction tasks. MATERIALS AND METHODS: We iteratively developed and evaluated an error taxonomy based on existing literature, standards, real-world data, multisite case evaluations, and community feedback. The finalized taxonomy was released in both .dtd and .owl formats at the Open Health Natural Language Processing Consortium. The taxonomy is compatible with several different open-source annotation tools, including MAE, Brat, and MedTator. RESULTS: The resulting error taxonomy comprises 43 distinct error classes, organized into 6 error dimensions and 4 properties, including model type (symbolic and statistical machine learning), evaluation subject (model and human), evaluation level (patient, document, sentence, and concept), and annotation examples. Internal and external evaluations revealed strong variations in error types across methodological approaches, tasks, and EHR settings. Key points emerged from community feedback, including the need to enhancing clarity, generalizability, and usability of the taxonomy, along with dissemination strategies. CONCLUSION: The proposed taxonomy can facilitate the acceleration and standardization of the error analysis process in multi-site settings, thus improving the provenance, interpretability, and portability of NLP models. Future researchers could explore the potential direction of developing automated or semi-automated methods to assist in the classification and standardization of error analysis.

3.
Front Pharmacol ; 15: 1389873, 2024.
Article in English | MEDLINE | ID: mdl-38751777

ABSTRACT

Background: In previous investigations, we explored the regulation of gastric function by hydrogen sulfide (H2S) and L-glutamate (L-Glu) injections in the nucleus ambiguus (NA). We also determined that both H2S and L-Glu have roles to play in the physiological activities of the body, and that NA is an important nucleus for receiving visceral sensations. The purpose of this study was to explore the potential pathway link between L-Glu and H2S, resulting in the regulation of gastric function. Methods: Physiological saline (PS), L-glutamate (L-Glu, 2 nmol), NaHS (2 nmol), D-2-amino-5-phopho-novalerate (D-AP5, 2 nmol) + L-Glu (2 nmol), aminooxyacetic acid (AOAA, 2 nmol) + L-Glu (2 nmol), D-AP5 (2 nmol) + NaHS (2 nmol) were injected into the NA. A balloon was inserted into the stomach to observe gastric pressure and for recording the changes of gastric smooth muscle contraction curve. The gastric fluid was collected by esophageal perfusion and for recording the change of gastric pH value. Results: Injecting L-Glu in NA was found to significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01). On the other hand, injecting the PS, pre-injection N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, cystathionine beta-synthase (CBS) inhibitor AOAA and re-injection L-Glu did not result in significant changes (p > 0.05). The same injection NaHS significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01), but is eliminated by injection D-AP5 (p > 0.05). Conclusion: The results indicate that both exogenous L-Glu and H2S injected in NA regulate gastric motility and gastric acid secretion through NMDA receptors. This suggests that NA has an L-Glu-NMDA receptor-CBS-H2S pathway that regulates gastric function.

4.
Article in English | MEDLINE | ID: mdl-38775414

ABSTRACT

OBJECTIVE: Anoikis, a kind of programmed cell death that is triggered when cells lose contact with each other or with the matrix. However, the potential value of anoikis-related genes (ARGs) in keloid (KD) has not been investigated. APPROACH: We downloaded three keloid fibroblast (KF) RNA-seq datasets from the GEO and obtained 338 ARGs from a search of the GeneCards database and PubMed articles. WGCNA was used to construct the coexpression network, and obtain the KF-related ARGs. The LASSO-Cox method was used to screen the hub ARGs and construct the best prediction model. Then, GEO single cell sequencing datasets were used to verify the expression of hub genes. We used whole RNA sequencing for gene-level validation, and the correlation between KD immune infiltration and anoikis. RESULTS: Our study comprehensively analyzed the role of ARGs in KD for the first time. LASSO regression analysis identified six hub ARGs (HIF1A, SEMA7A, SESN1, CASP3, LAMA3 and SIK2). A large number of miRNAs participate in the regulation of hub ARGs. In addition, correlation analysis revealed that ARGs were significantly correlated with the infiltration levels of multiple immune cells in KD patients. Innovation We explored the expression characteristics of ARGs in KD, which is extremely important for determining the molecular pathways and mechanisms underlying KD. CONCLUSIONS: This study provides a useful reference for revealing the characteristics of ARGs in the pathogenesis of KD. The identified hub genes may provide potential therapeutic targets for patients. This study provides new ideas for individualized therapy and immunotherapy.

5.
Int J Biol Macromol ; : 132724, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815946

ABSTRACT

In this study, intelligent double-layer films were prepared using modified black rice anthocyanin (MBRA)-curcumin (CUR)-gellan gum (GG) as the inner indicator layer and sodium alginate (ALG)­zinc oxide (ZnO) as the outer antimicrobial layer. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements. The mechanical characteristics, moisture content, and water vapor resistance of GG-MBRA/CUR1@ALG-ZnO, GG-MBRA/CUR2@ALG-ZnO, and GG-MBRA/CUR3@ALG-ZnO films showed significant enhancement compared to GG-MBRA/CUR3 and ALG-ZnO films. The bilayer films exhibited excellent pH responsiveness and reacted effectively to ammonia. The outer layer significantly improved the antioxidant and antibacterial properties of the inner layer. When the films were applied to shrimp, it was found that the double-layer films not only monitored the freshness of the shrimp in real-time but also were influential in extending the shelf life of the shrimp by about 1 d. Therefore, the double-layer film demonstrated potential as a smart packaging material for real-time monitoring of meat product freshness.

6.
Front Immunol ; 15: 1393852, 2024.
Article in English | MEDLINE | ID: mdl-38711526

ABSTRACT

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Subject(s)
Genital Neoplasms, Female , Mitochondria , Organelles , Humans , Female , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organelles/metabolism , Cell Survival , Animals , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Autophagy , Energy Metabolism , Signal Transduction
7.
Small ; : e2401770, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764303

ABSTRACT

Ultrathin PtSe2 ribbons can host spin-polarized edge states and distinct edge electrocatalytic activity, emerging as a promising candidate for versatile applications in various fields. However, the direct synthesis is still challenging and the growth mechanism is still unclear. Herein, the arrayed growth of ultrathin PtSe2 ribbons on bunched vicinal Au(001) facets, via a facile chemical vapor deposition (CVD) route is reported. The ultrathin PtSe2 flakes can transform from traditional irregular shapes to desired ribbon shapes by increasing the height of bunched and unidirectionally oriented Au steps (with step height hstep) is found. This crossover, occurring at hstep ≈ 3.0 nm, defines the tailored growth from step-flow to single-terrace-confined modes, as validated by density functional theory calculations of the different system energies. On the millimeter-scale single-crystal Au(001) films with aligned steps, the arrayed ultrathin PtSe2 ribbons with tunable width of ≈20-1000 nm, which are then served as prototype electrocatalysts for hydrogen evolution reaction (HER) is achieved. This work should represent a huge leap in the direct synthesis and the mechanism exploration of arrayed ultrathin transition-metal dichalcogenides (TMDCs) ribbons, which should stimulate further explorations of the edge-related physical properties and practical applications.

8.
Nat Commun ; 15(1): 4340, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773142

ABSTRACT

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Subject(s)
Apoptosis Regulatory Proteins , Disease Models, Animal , Lipopolysaccharides , MAP Kinase Kinase Kinases , Macrophages , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Sepsis/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Male , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Phosphorylation , Humans , Ubiquitination , Zearalenone/analogs & derivatives , Zearalenone/pharmacology , Zearalenone/administration & dosage , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Inflammation/metabolism , Inflammation/pathology , Phosphoric Monoester Hydrolases/metabolism , Mice, Knockout , Lactones , Resorcinols
9.
Radiother Oncol ; 197: 110328, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761884

ABSTRACT

BACKGROUND AND PURPOSE: Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC. MATERIAL AND METHODS: 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts. Their clinical data, pretreatment T2-weighted images (T2WI) were retrieved and analyzed. Radiomics models were constructed using machine learning methods with features extracted and screen from sagittal and axial T2WI. A nomogram for recurrence prediction was build and evaluated using multivariable logistic regression analysis integrating radiomic signature and adjuvant treatments. RESULTS: A total of 8 radiomic features were screened out of 1020 extracted features. The extreme gradient boosting (XGboost) model based on MRI radiomic features performed best in recurrence prediction with an area under curve (AUC) of 0.833, 0.822 in the internal and external validation cohorts, respectively. The nomogram integrating radiomic signature and clinical factors achieved an AUC of 0.806, 0.718 in the internal and external validation cohorts, respectively, for recurrence risk prediction for ESCC. CONCLUSION: In this study, the nomogram integrating T2WI radiomic signature and clinical factors is valuable to predict the recurrence risk, thereby allowing timely planning for effective treatments for ESCC with high risk of recurrence.

10.
Adv Mater ; : e2403876, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739951

ABSTRACT

Sorption-based atmospheric water harvesting is an attractive technology for exploiting unconventional water sources. A critical challenge is how to facilitate fast and continuous collection of potable water from air. Here, a bio-based gel (cellulose/alginate/lignin gel, CAL gel), resulting from the integration of a whole biomass-derived polymer network with lithium chloride is reported. A fast adsorption/desorption kinetics, with a water capture rate of 1.74 kg kg-1 h-1 at 30% relative humidity and a desorption rate of 1.98 kg kg-1 h-1, is simultaneously realized in one piece of CAL gel, because of its strong hygroscopicity, hydrophilic network, abundant water transport channels, photothermal conversion ability, and ≈200-µm-thick self-supporting bulky structure caused by multicomponent synergy. A solar-driven, drum-type, tunable, and portable harvester is designed that can harvest atmospheric water within a brief time. Under outdoor conditions, the harvester with CAL gels operates 36 switches (180°) per day realizes a water yield of 8.96 kg kggel -1 (18.87 g kgdevice -1). This portable harvester highlights the potential for fast and scalable atmospheric water harvesting in extreme environments.

11.
Food Chem X ; 22: 101301, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38559440

ABSTRACT

In this study, liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to analyze the prevalence of 10 mycotoxins in 140 samples from the Chinese market, aiming to assess the exposure of Chinese individuals to these mycotoxins through the consumption of wine, baijiu, and huangjiu. Mycotoxins were detected in 98% of the samples, with fumonisins (FBs), deoxynivalenol (DON), and zearalenone (ZEN) exhibiting positive rates exceeding 50%. Regarding the exposure of the Chinese population to mycotoxins resulting from alcoholic beverage consumption, fruit wine intake made a relatively significant contribution to aflatoxin exposure, while baijiu showed a relatively significant contribution to ZEN exposure (1.84%). The analysis of the correlation between grape variety, wine region, and mycotoxin content demonstrated that FBs, ZEN, and DON were significantly influenced by grape variety and wine region. This research holds great significance in protecting human life and health, as well as in the production of safer alcoholic beverages.

12.
Cells ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607075

ABSTRACT

GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.


Subject(s)
Kidney Diseases , Podocytes , Humans , Mice , Animals , Podocytes/metabolism , Puromycin Aminonucleoside/adverse effects , Puromycin Aminonucleoside/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Creatinine/metabolism , Kidney Diseases/metabolism , Inflammation/metabolism , Mice, Knockout
13.
J Mater Chem B ; 12(16): 4039-4052, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38591157

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Nanocomposites , Phosphorus , Photochemotherapy , Photothermal Therapy , Titanium , Titanium/chemistry , Titanium/pharmacology , Phosphorus/chemistry , Humans , Animals , Nanocomposites/chemistry , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Mice , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Particle Size , Cell Line, Tumor
14.
Food Res Int ; 184: 114256, 2024 May.
Article in English | MEDLINE | ID: mdl-38609234

ABSTRACT

Mycotoxins are important risk factors in beer. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine 10 mycotoxins in beer within 6 min. The method is fast, efficient, and has a simple and quick sample preparation. Validation was conducted based on the performance standards specified in Commission Decision 657/2002/EC, and the results demonstrated excellent linearity (R2 > 0.99), repeatability (RSD < 5 %), quantification limits (0.005-20.246 µg/L), and recovery rates (77 %-118 %). The prevalence of the 10 mycotoxins in 96 beers purchased from the Chinese market was analyzed, and the exposure of the Chinese population to mycotoxins through beer consumption was assessed. Deoxynivalenol (DON) was detected in 93.75 % of the beers, and the incidence of fumonisins (FBs) and zearalenone (ZEN) exceeded 50 %. Beer intake contributed significantly to the exposure of aflatoxins (AFs) and DON, especially in males. Correlation analysis between mycotoxin content in beer, raw materials, and the brewing process revealed that the brewing process significantly affected the content of DON (P < 0.001), while auxiliary materials also had a significant impact on the content of FBs and DON (P < 0.001). This study holds great significance in producing higher quality and safer beer.


Subject(s)
Aflatoxins , Mycotoxins , Male , Humans , Beer , Chromatography, Liquid , Tandem Mass Spectrometry
15.
Article in English | MEDLINE | ID: mdl-38568772

ABSTRACT

The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT). Compared to existing foundation models, SpectralGPT 1) accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS Big Data; 2) leverages 3D token generation for spatial-spectral coupling; 3) captures spectrally sequential patterns via multi-target reconstruction; 4) trains on one million spectral RS images, yielding models with over 600 million parameters. Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS Big Data applications within the field of geoscience across four downstream tasks: single/multi-label scene classification, semantic segmentation, and change detection.

16.
Gels ; 10(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38667659

ABSTRACT

Antibacterial hydrogels have attracted significant attention due to their diverse applications, efficient antimicrobial properties, and adaptability to various environments and requirements. However, their relatively fragile structure, coupled with the potential for environmental toxicity when exposed to their surroundings for extended periods, may significantly limit their practical application potential. In this work, a composite hydrogel was synthesized with outstanding mechanical features and antibacterial capability. The hydrogel was developed through the combination of the eco-friendly and enduring antibacterial agent, lignin silver nanoparticles (Lig-Ag NPs), with polyvinyl alcohol (PVA) and sodium alginate (SA), in varying proportions. The successful synthesis of the hydrogel and the dispersed distribution of Lig-Ag NPs within the hydrogel were confirmed by various analytical techniques, including field emission scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), mercury intrusion porosimetry (MIP), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The formation of multiple hydrogen bonds between Lig-Ag NPs and the composites contributed to a more stable and dense network structure of the hydrogel, consequently enhancing its mechanical properties. Rheological tests revealed that the hydrogel exhibited an elastic response and demonstrated outstanding self-recovery properties. Significantly, the antibacterial hydrogel demonstrated effectiveness against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), achieving a <5% survival of bacteria within 12 h. This study presented a green and straightforward synthetic strategy for the application of antibacterial composite hydrogels in various fields.

17.
Ecotoxicol Environ Saf ; 276: 116288, 2024 May.
Article in English | MEDLINE | ID: mdl-38581909

ABSTRACT

Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 µg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 µg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.


Subject(s)
Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Escherichia coli , Glutathione , Plasmids , Uracil , Plasmids/genetics , Glutathione/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Bacterial Toxins/toxicity , Uracil/analogs & derivatives , Uracil/toxicity , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Conjugation, Genetic , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics
18.
J Colloid Interface Sci ; 668: 426-436, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38688181

ABSTRACT

Reactive radicals are crucial for activating inert and low-polarity C(sp3)-H bonds for the fabrication of high value-added products. Herein, novel single-crystal oxygen-rich bismuth oxybromide nanosheets (Bi4O5Br2 SCNs) with more than 85 % {10-1} facets exposure and oxygen defects were synthesized via a facile solvothermal route. The Bi4O5Br2 SCNs demonstrated excellent photocatalytic performance in the selective oxidation of toluene under blue light. The yield of benzaldehyde was 1876.66 µmol g-1 h-1, with a selectivity of approximately 90 %. Compared to that of polycrystalline Bi4O5Br2 nanosheets (Bi4O5Br2 PCNs), the activity of Bi4O5Br2 SCNs exhibit a 21-fold increase. Experimental studies and density functional theory (DFT) calculations have demonstrated that the defect Bi4O5Br2 (10-1) facets exhibits exceptional adsorption properties for O2 molecules. In addition, the single-crystal structure in the presence of surface defects significantly increases the separation and transport of photogenerated carriers, resulting in the effective activation of adsorbed O2 into superoxide radicals (•O2-). Subsequently, the positively charged phenylmethyl H is readily linked to the negatively charged superoxide radical anion, thereby activating the CH bond. This study offers a fresh perspective and valuable insights into the development of efficient molecular oxygen-activated photocatalysts and their application in the selective catalytic conversion of aromatic C(sp3)-H bonds.

19.
Nanoscale ; 16(18): 9068-9074, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38639481

ABSTRACT

Active terahertz metasurface devices have been widely used in communication technology, optical computing and biosensing. However, numerous dynamically tunable metasurfaces are only operating at a single frequency point or in a narrow range, limiting the further possibility of the devices to meet contemporary broad-spectrum biosensing requirements. In this paper, a novel compact biosensor is proposed with an ultrawide resonance frequency agile channel shifted from 0.82 to 1.85 THz, with a tuning functionality up to 55.7%. In addition, under optical pumping irradiation, the modulator with ultra-fast response is able to complete the ultra-wideband resonant mode conversion from the Fano mode to the electromagnetically induced transparency (EIT) mode within 4 ps, and achieves a frequency shift sensitivity of 118 GHz RIU-1 and 247 GHz RIU-1 at 0.82 and 1.85 THz, respectively. This mechanism implements both refractive index and conductivity sensing functions, which provide a wealth of sensing information. Thus, this work presents the possibility of realising the detection of ultra-wide fingerprint spectra and can be extended to a wider range of optical fields.

20.
Blood ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657197

ABSTRACT

Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure, but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein serving as the final downstream effector of pyroptosis/interleukin (IL)-1pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd-deficiency ameliorated immunothrombosis, acute tissue injury and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1, as well as in neutrophil maturation, 2 integrin activation, and recruitment to TMA lesions, where they formed reduced neutrophil extracellular traps both in arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient human induced pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil 2 integrin activation, maturation as well as pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected mice from focal TMA, acute tissue injury and failure. Our data identify GSDMD as a key mediator of focal crystalline TMA and its consequences: ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for systemic forms of TMA.

SELECTION OF CITATIONS
SEARCH DETAIL
...