Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(43): 40878-40889, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929132

ABSTRACT

Mesoporous tungsten trioxide (WO3) films are prepared by the combination of the template-assisted sol-gel method and ultrasonic spraying deposition (USD) for supercapacitors, and then the surface morphology and electrochemical performance of the films are studied. Compared to WO3 prepared by the traditional hydrothermal synthesis and spin coating method, the films obtained by USD exhibit advantages such as low cost, minimal material usage, and suitability for large-area in-line manufacturing. Additionally, the mesoporous structure of USD-produced films is also supportive of ion transportation. Due to the high specific surface area of WO3 films deposited by USD, it is a material capable of use in a high-performance energy storage device. Through the control of spray coats, the film thickness and specific capacitance can be effectively controlled. Electrochemical measurements show that the mesoporous WO3 films possess excellent electrochemical performance with a maximum specific capacitance of 109.15 F/g at 0.5 A/g. The cycling performance up to 5000 cycles of mesoporous WO3 films is due to the stable nature of nanocrystalline produced by the combination of USD and sol-gel chemistry.

2.
Polymers (Basel) ; 13(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502957

ABSTRACT

Thermal and dielectric properties of rigid-rod bifunctional epoxy resin 4,4-bis(2,3-epoxypropoxy) biphenyl epoxy (BP) and commercial epoxy resin diglycidyl ether of bisphenol A (DGEBA) were studied using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermal mechanical analyzer (TMA) and dielectric analyzer (DEA). These two epoxies were cured with cyanate ester hardener 2,2'-bis(4-cyanatophenyl) propane (AroCy B10). The BP/B10 system consisting of a rigid-rod structure exhibited better thermal properties than the DGEBA/B10 system with a flexible structure. Anisotropic BP/B10 (2:1) had the highest 5% weight loss temperature, the highest amount of residue and a smaller thermal expansion coefficient than the commercial DGEBA/B10 system. The BP/B10 system, which cured at the LC phase temperature, had higher Tg than the commercial DGEBA/B10 system, as found from dynamic mechanical analysis. The BP/B10 system also demonstrated better dielectric properties than the commercial DGEBA/B10 system when enough curing agent was provided.

3.
Materials (Basel) ; 14(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443200

ABSTRACT

Chenopodium formosanum (CF), rich in nutrients and antioxidants, is a native plant in Taiwan. During the harvest, the seeds are collected, while the roots, stems, and leaves remain on the field as agricultural waste. In this study, di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radical scavenging ability and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability experiments of seeds, leaves, stems, and roots were designed using the Taguchi method (TM) under three conditions: Ethanol concentration (0-100%), temperature (25-65 °C), and extraction time (30-150 min). The result demonstrates that seeds and leaves have higher radical scavenging ability than stems and roots. Many studies focused on CF seeds. Therefore, this study selected CF leaves and optimized DPPH, ABTS, total phenol content (TPC), total flavonoid content (TFC), and reducing power (RP) through TM, showing that the predicted value of the leaf is close to the actual value. The optimized results of CF leaves were DPPH 85.22%, ABTS 46.51%, TPC 116.54 µg GAE/mL, TFC 143.46 µg QE/mL, and RP 23.29 µg VCE (vitamin C equivalent)/mL. The DPPH and ABTS of CF leaves were second only to the results of CF seeds. It can be seen that CF leaves have the potential as a source of antioxidants and help in waste reduction.

4.
Polymers (Basel) ; 12(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532065

ABSTRACT

pH responsive chitosan and 3-Glycidyloxypropyl trimethoxysilane (GPTMS) hydrogels were synthesized by the sol-gel crosslinking reaction. GPTMS was introduced to influence several behaviors of the chitosan hydrogels, such as the swelling ratio, mechanical properties, swelling thermodynamics, kinetics, and expansion mechanism. The functional groups of Chitosan/GPTMS hybrid hydrogels were verified by FT-IR spectrometer. Differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) were used to analyzed the thermal behavior of water molecules, the expansion of thermodynamics, and the content of water molecules in the hydrogel. The results show that hydrogel consists of 50 wt.% GPTMS (CG50) and has good mechanical properties and sensitivity to pH response characteristics in the acidic/alkaline buffer solution. The increase of GPTMS content leads to the increase of hydrophobic groups in the hydrogel and causes the decrease of the overall water content and the freezing bond water content. When the hydrogels were immersed in acid solution, the interaction force parameter was smaller than that of DI-water and alkaline. It means that the interaction forces between hydrogel and water molecules are relatively strong. The swelling kinetics of hybrid hydrogels were investigated to inspect the swelling mechanism. The result is consistent with the Fisk's diffusion mechanism, meaning that the rate of water penetration is adjustable. The biodegradable hydrogel (CG50) in this study has good environmental sensitivity and mechanical properties. It is suitable to be applied in the fields of drug release or biomedical technology.

5.
Nanotechnology ; 23(25): 255601, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22653083

ABSTRACT

A low-temperature ozone exposure technique was employed for the post-treatment of WO(x) nanorod thin films fabricated from hot-wire chemical vapor deposition (HWCVD) and ultrasonic spray deposition (USD) techniques. The resulting films were characterized with x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-vis-NIR spectroscopy and x-ray photoelectron spectroscopy (XPS). The stoichiometry and surface crystallinity of the WO(x) thin films were subsequently modulated upon ozone exposure and thermal annealing without particle growth. The electrochromic performance was studied in a LiClO(4)-propylene carbonate electrolyte, and the results suggest that the low-temperature ozone exposure technique is superior to the traditional high-temperature thermal annealing (employed to more fully oxidize the WO(x)). The optical modulation at 670 nm was improved from 35% for the as-deposited film to 57% for the film after ozone exposure at 150 °C. The coloration efficiency was improved and the switching speed to the darkened state was significantly accelerated from 18.0 s for the as-deposited film to 11.8 s for the film after the ozone exposure. The process opens an avenue for low-temperature and cost-effective manufacturing of electrochromic films, especially on flexible polymer substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...