Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1052607, 2023.
Article in English | MEDLINE | ID: mdl-36845170

ABSTRACT

Exogenous insulin therapy is the mainstay treatment for Type-1 diabetes (T1D) caused by insulin deficiency. A fine-tuned insulin supply system is important to maintain the glucose homeostasis. In this study, we present a designed cell system that produces insulin under an AND gate control, which is triggered only in the presence of both high glucose and blue light illumination. The glucose-sensitive GIP promoter induces the expression of GI-Gal4 protein, which forms a complex with LOV-VP16 in the presence of blue light. The GI-Gal4:LOV-VP16 complex then promotes the expression of UAS-promoter-driven insulin. We transfected these components into HEK293T cells, and demonstrated the insulin was secreted under the AND gate control. Furthermore, we showed the capacity of the engineered cells to improve the blood glucose homeostasis through implantation subcutaneously into Type-1 diabetes mice.

2.
Chem Biodivers ; 18(5): e2001023, 2021 May.
Article in English | MEDLINE | ID: mdl-33721383

ABSTRACT

In this study, Dendrobium officinale polysaccharide (named DOPS-1) was isolated from the stems of Dendrobium officinale by hot-water extraction and purified by using Sephadex G-150 column chromatography. The structural characterization, antioxidant and cytotoxic activity were carried out. Based on the results of HPLC, GC, Congo red experiment, together with periodate oxidation, Smith degradation, SEM, FT-IR, and NMR spectral analysis, it expressed that DOPS-1 was largely composed of mannose, glucose and galacturonic acid in a molar ratio of 3.2 : 1.3 : 1. The molecular weight of DOPS-1 was 1530 kDa and the main chain was composed of (1→4)-ß-D-Glcp, (1→4)-ß-D-Manp and 2-O-acetyl-(1→4)-ß-D-Manp. The measurement results of antioxidant activity showed that DOPS-1 had the strong scavenging activities on hydroxyl radicals, DPPH radicals and superoxide radicals and the high reducing ability in vitro. Moreover, DOPS-1 was cytotoxic to all three human cancer cells of MDA-MB-231, A549 and HepG2.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Dendrobium/chemistry , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Stems/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification
3.
Anal Chim Acta ; 1146: 70-76, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33461721

ABSTRACT

An electrochemical-biosensor (EC-biosensor) microchip consisting of screen-printed electrodes and a double-layer reagent paper detection zone impregnated with amaranth is proposed for the rapid determination of microalbuminuria (MAU) in human urine samples. Under the action of an applied deposition potential, the amaranth is adsorbed on the electrode surface and the subsequent reaction between the modified surface and the MAU content in the urine sample prompts the formation of an inert layer on the electrode surface. The inert layer impedes the transfer of electrons and hence produces a drop in the response peak current, from which the MAU concentration can then be determined. The measurement results obtained for seven artificial urine samples with known MAU concentrations in the range of 0.1-40 mg/dL show that the measured response peak current is related to the MAU concentration with a determination coefficient of R2 = 0.991 in the low concentration range of 0.1-10 mg/dL and R2 = 0.996 in the high concentration range of 10-40 mg/dL. Furthermore, the detection results obtained for 82 actual chronic kidney disease (CKD) patients show an excellent agreement (R2 = 0.988) with the hospital analysis results. Overall, the results confirm that the proposed detection platform provides a convenient and reliable approach for performing sensitive point-of-care testing (POCT) of the MAU content in human urine samples.


Subject(s)
Biosensing Techniques , Renal Insufficiency, Chronic , Albuminuria/diagnosis , Electrochemical Techniques , Electrodes , Humans , Renal Insufficiency, Chronic/diagnosis
4.
Exp Anim ; 64(4): 425-33, 2015.
Article in English | MEDLINE | ID: mdl-26193895

ABSTRACT

Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study.


Subject(s)
Aging/pathology , Aging/physiology , Disease Models, Animal , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Sarcopenia/pathology , Sarcopenia/physiopathology , Animals , In Vitro Techniques , Male , Muscle Contraction , Muscle Fibers, Skeletal/classification , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...