Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(37): 22898-22904, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36124909

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is found in SARS-CoV-2 virus, which causes COVID-19. 3CLpro controls virus replication and is a major target for target-based antiviral discovery. As reported by Pfizer, Nirmatrelvir (PF-07321332) is a competitive protein inhibitor and a clinical candidate for orally delivered medication. However, the binding mechanisms between Nirmatrelvir and 3CLpro complex structures remain unknown. This study incorporated ligand Gaussian accelerated molecular dynamics, the one-dimensional and two-dimensional potential of mean force, normal molecular dynamics, and Kramers' rate theory to determine the binding and dissociation rate constants (koff and kon) associated with the binding of the 3CLpro protein to the Nirmatrelvir inhibitor. The proposed approach addresses the challenges in designing small-molecule antiviral drugs.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Lactams , Leucine , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles , Peptide Hydrolases/metabolism , Proline , SARS-CoV-2/drug effects
2.
Sci Rep ; 11(1): 7598, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828191

ABSTRACT

Ovarian cancer is highly metastatic, with a high frequency of relapse, and is the most fatal gynecologic malignancy in women worldwide. It is important to elevate the drug susceptibility and cytotoxicity of ovarian cancer cells, thereby eliminating resident cancer cells for more effective therapeutic efficacy. Here, we developed a bispecific antibody (BsAb; mPEG × HER2) that can easily provide HER2+ tumor tropism to mPEGylated liposomal doxorubicin (PLD) and further increase the drug accumulation in cancer cells via receptor-mediated endocytosis, and improve the cytotoxicity and therapeutic efficacy of HER2+ ovarian tumors. The mPEG × HER2 can simultaneously bind to mPEG molecules on the surface of PLD and HER2 antigen on the surface of ovarian cancer cells. Simply mixing the mPEG × HER2 with PLD was able to confer HER2 specificity of PLD to HER2+ ovarian cancer cells and efficiently trigger endocytosis and enhance cytotoxicity by 5.4-fold as compared to non-targeted PLD. mPEG × HER2-modified PLD was able to significantly increase the targeting and accumulation of HER2+ ovarian tumor by 220% as compared with non-targeted PLD. It could also significantly improve the anti-tumor activity of PLD (P < 0.05) with minimal obvious toxicity in a tumor-bearing mouse model. We believe that the mPEG × HER2 can significantly improve the therapeutic efficacy, potentially reduce the relapse freqency and thereby achieve good prognosis in ovarian cancer patients.


Subject(s)
Ovarian Neoplasms/therapy , Polyethylene Glycols/pharmacology , Tropism/drug effects , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Doxorubicin/therapeutic use , Drug Carriers , Drug Delivery Systems , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Nanoparticles , Neoplasm Recurrence, Local , Ovarian Neoplasms/metabolism , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Polyethylene Glycols/therapeutic use , Tropism/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...