Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(21): 13468-13483, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739894

ABSTRACT

An environmental-friendly and sustainable carbon-based host is one of the most competitive strategies for achieving high loading and practicality of Li-S batteries. However, the polysulfide conversion reaction kinetics is still limited by the nonuniform or monofunctional catalyst configuration in the carbon host. In this work, we propose a catalysis mode based on "relay-type" co-operation by adjacent dual-metal single atoms for high-rate and durable Li-S batteries. A discarded sericin fabric-derived porous N-doped carbon with a stacked schistose structure is prepared as the high-loading sulfur (84 wt %) host by a facile ionothermal method, which further enables the uniform anchoring of Fe/Co dual-metal single atoms. This multifunctional host enables superior lithiophilic-sulfiphilic and electrocatalytic capabilities contributed by the "relay-type" single-atom modulation effects on different conversion stages of liquid polysulfides and solid Li2S2/Li2S, leading to the suppression of the "shuttle effect", alleviation of nucleation and decomposition barriers of Li2Sx, and acceleration of polysulfide conversion kinetics. The corresponding Li-S batteries exhibit a high specific capacity of 1399.0 mA h g-1, high-rate performance up to 10 C, and excellent cycling stability over 1000 cycles. They can also endure the high sulfur loading of 8.5 mg cm-2 and the lean electrolyte condition and yield an areal capacity as high as 8.6 mA h cm-2. This work evidentially demonstrates the potential of waste biomass reutilization coupled with the design of a single-atom system for practical Li-S batteries with high energy density.

2.
ACS Nano ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319748

ABSTRACT

Fluoride-based solid electrolytes (SEs) have emerged as a promising component for high-energy-density rechargeable solid-state batteries (SSBs) in view of their wide electrochemical window, high air stability, and interface compatibility, but they still face the challenge of low ion conductivity and the lack of a desired structure for sodium metal SSBs. Here, we report a sodium-rich heterostructure fluoride SE, Na3GaF6-Ga2O3-NaCl (NGFOC-G), synthesized via in situ oxidation of liquid metal gallium and in situ chlorination using low-melting GaCl3. The distinctive features of NGFOC-G include single-crystal Na3GaF6 domains within an open-framework structure, composite interface decoration of Ga2O3 and NaCl with a concentration gradient, exceptional air stability, and high electrochemical oxidation stability. By leveraging the penetration of gallium at NaF grain boundaries and the in situ self-oxidation to form Ga2O3 nanodomains, the solid-phase reaction kinetics of NaF and GaF3 is activated for facilitating the synthesis of main component Na3GaF6. The introduction of a small amount of a chlorine source during synthesis further softens and modifies the boundaries of Na3GaF6 along with Ga2O3. Benefiting from the enhanced interface ion transport, the optimized NGFOC-G exhibits an ionic conductivity up to 10-4 S/cm at 40 °C, which is the highest level reported among fluoride-based sodium-ion SEs. This SE demonstrates a "self-protection" mechanism, where the formation of a high Young's modulus transition layer rich in NaF and Na2O under electrochemical driving prevents the dendrite growth of sodium metal. The corresponding Na/Na symmetric cells show minimal voltage hysteresis and stable cycling performance for at least 1000 h. The Na/NGFOC-G/Na3V2(PO4)3 cell demonstrates stable capacity release around 100 mAh/g at room temperature. The Na/NGFOC-G/FeF3 cell delivers a high capacity of 461 mAh/g with an excellent stability of conversion reaction cycling.

3.
Mater Horiz ; 11(9): 2169-2179, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38384254

ABSTRACT

Batteries taking conversion-type iron fluorides as energy-dense cathodes provide the possibility for the power electrification of the transportation and aviation industries. However, a safe and low-toxicity synthesis method for fluorides and the design of a compatible electrolyte formula are still challenging. Here, we propose a dual strategy of mild C-F scissoring fluorination and a local high-concentration electrolyte (LHCE) to enable highly reversible Li-Fe-F conversion batteries. A facile and safe scissoring strategy at a low temperature (95 °C) enables the preparation of a carbon-iron fluoride composite with a porous cubic cage-like structure. CFx plays a double role as a solid fluorination agent and an in situ conductive network after defluorination. The as-prepared fluoride cathode delivers a reversible capacity as high as 300 mA h g-1 over 100 cycles. The further LHCE strategy not only enhances the oxidation stable voltage of the electrolyte (>5 V) and the transference number of Li+ (0.74), but also realizes dual protection of the fluoride cathode and Li metal anode by facilitating the construction of robust cathode- and anode-electrolyte interfaces, respectively. The LHCE-assisted fluoride battery releases a higher reversible capacity of 335 mA h g-1 after 130 cycles. This work provides a solution to high-performance carbon-fluoride conversion cathodes by a synergetic effect of tailored synthesis, electroactive particle texture and electrolyte formula.

4.
Small ; 20(25): e2308727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229134

ABSTRACT

T-Nb2O5 characterized by the pronounced intercalation pseudocapacitance effect, is regarded as a promising and alternative anode for fast-charging Li-ion batteries. However, its electrochemical kinetics are still hindered by the absence of sufficient and homogenous conductive wiring inside active microparticles. Herein, an in situ pillaring strategy of electronic nano-wires is proposed to slice T-Nb2O5 laminated particles for the development of durable and fast-charging anodes for Li-ion batteries. A micro-level layered structure consisting of nano-carbon-inserted T-Nb2O5 composite flakes is designed and enabled by successive ion exchange, slice exfoliation, in situ polymerization, and carbonization processes. The pillared carbon interlayer (derived from polyaniline) can serve as in-built conductive wires to promote and homogenize electron transfer inside the micro-level particles. The porous structure (formed by the self-assembly of exfoliated flakes) contributes to the improved electrolyte immersion and enhanced lithium migration. Benefitting from the kinetically favorable effects, the modified T-Nb2O5 anode achieves the high-rate capability (108.4 mAh g-1 at 10 A g-1) and ultralong cycling durability (138 mAh g-1 at 1.0 A g-1 after 8000 cycles, with an average capacity decaying rate as small as 0.043‰). This work provides an effective strategy of electron wire pillaring with the slicing effect for laminated electrode materials with high tap density.

5.
Mater Horiz ; 11(2): 480-489, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37965817

ABSTRACT

Rechargeable fluoride ion batteries (FIBs) as an emerging anion shuttle system are attracting much attention due to their potential advantages in terms of energy density, cost and safety. A liquid electrolyte system enables the FIB operation at low or room temperature due to its higher ionic conductivity than that of a solid F-ion electrolyte. However, the insolubility of fluoride salts in aprotic solvents limits the development of liquid F-ion electrolytes. Although the boron-based anion acceptors (AAs) can facilitate the dissolution of F-ion salts, they are prone to lead to a tough desolvation process for F- due to strong Lewis acidity and therefore an inferior electrochemical performance. Here, a new non-boron AA (6-thioguanine) with moderate Lewis acidity is proposed to dissolve F- in the sulfone solvent. The ionic conductivity of the corresponding electrolytes reaches a level of mS cm-1 at room temperature. A model FIB coin cell is successfully operated with high conversion reaction reversibility based on the coupled defluorination/fluorination mechanism of electrodes, enabling a low overpotential of 0.36 V and a reversible capacity of 126 mA h g-1 after 40 cycles.

6.
Small Methods ; : e2301109, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059773

ABSTRACT

Magnesium metal batteries (MMBs) currently face challenges suffering from severe Mg metal passivation and extremely high overpotential in conventional electrolytes. Herein, a strategy of using a low-cost deep eutectic solution (DES) is proposed to modify Mg anode with the monolithic and compact coating of a MgCl2 -Al-MgCl2 sandwich structure, enabling the stable and reversible Mg plating-stripping behavior. An organic/nanocrystal hybrid interphase is in-situ built through a facile Mg-Al displacement reaction between aluminum-chloro clusters and Mg in AlCl3 /Et3 NHCl solution, and it can effectively minimize the adverse interfacial passivation reaction and surface diffusion barrier, affording the high ion-conduction and electronic insulation. This DES-assisted method guarantees a highly reversible cycling of Mg metal anode (over 5000 h at 0.1 mA cm-2 and 400 h at 2.0 mAh cm-2 ) in Mg(TFSI)2 /DME electrolyte with the improved interfacial kinetics and low overpotential. Even at a much higher current density of 1 mA cm-2 , the overpotential only undergoes a slight increase from 0.2 V (at 0.1 mA cm-2 ) to 0.23 V. The corresponding full cells with CuS and phenanthraquinone cathodes deliver satisfactory cyclic performance. The DES modification strategy provides a new solution to the design of robust and conductive solid electrolyte interphase for achieving high-voltage and durable MMBs.

7.
Nat Commun ; 13(1): 7914, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36564384

ABSTRACT

All-solid-state batteries are appealing electrochemical energy storage devices because of their high energy content and safety. However, their practical development is hindered by inadequate cycling performances due to poor reaction reversibility, electrolyte thickening and electrode passivation. Here, to circumvent these issues, we propose a fluorination strategy for the positive electrode and solid polymeric electrolyte. We develop thin laminated all-solid-state Li||FeF3 lab-scale cells capable of delivering an initial specific discharge capacity of about 600 mAh/g at 700 mA/g and a final capacity of about 200 mAh/g after 900 cycles at 60 °C. We demonstrate that the polymer electrolyte containing AlF3 particles enables a Li-ion transference number of 0.67 at 60 °C. The fluorinated polymeric solid electrolyte favours the formation of ionically conductive components in the Li metal electrode's solid electrolyte interphase, also hindering dendritic growth. Furthermore, the F-rich solid electrolyte facilitates the Li-ion storage reversibility of the FeF3-based positive electrode and decreases the interfacial resistances and polarizations at both electrodes.

8.
Adv Sci (Weinh) ; 9(25): e2202201, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35798318

ABSTRACT

High-rate anode material is the kernel of developing fast-charging lithium ion batteries (LIBs). T-Nb2 O5 , well-known for its "room and pillar" structure and bulk pseudocapacitive effect, is expected to enable the fast lithium (de)intercalation. But this property is still limited by the low electronic conductivity or insufficient wiring manner. Herein, a strategy of triple conductive wiring through electron doping, chelation coating, and electrochemical conversion inside the microsized porous spheres consisting of dendrite-like T-Nb2 O5 primary particles is proposed to achieve the fast-charging and durable anodes for LIBs. The penetrative implanting of conformal carbon coating (derivative from polydopamine chelate) and NbO domains (induced by excess discharging) reinforces the global supply of electronically conductive wires, apart from those from Co/Mn heteroatom or O vacancy doping. The polydopamine etching on T-Nb2 O5 spheres promotes their evolution into fluffy morphology with better electrolyte infiltration. The synergic electron and ion wiring at different scales endow the modified T-Nb2 O5 anode with ultralong cycling life (143 mAh g-1 at 1 A g-1 after 8500 cycles) and high-rate performance (144.1 mAh g-1 at 10.0 A g-1 ). The permeation of multiple electron wires also enables a high mass loading of T-Nb2 O5 (4.5 mg cm-2 ) with a high areal capacity of 0.668 mAh cm-2 even after 150 cycles.

9.
Sci Adv ; 7(45): eabj1491, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34730994

ABSTRACT

Conversion-type iron fluoride is a promising alternative cathode to intercalation oxides because of its higher energy density. However, its intrinsic solid-solid conversion is sluggish during repeated splitting and rebonding of metal-fluorine moieties. Here, we propose a solid-liquid conversion mechanism to activate the fluorine transport kinetics of iron oxyfluorides enabled by fluoride anion receptor of tris(pentafluorophenyl)borane (TPFPB). TPFPB promotes the dissociation of inert lithium fluoride and provides a facile fluorine transport channel at multiphase interfaces via the formation of solvated F− intermediate therein. The construction of solid-liquid channel with fluorinated cathode electrolyte interface is the key for the achievement of FeO0.3F1.7 and FeO0.7F1.3 in terms of sustaining conversion reaction (with an energy efficiency approaching 80%) and high-rate performance (with reversible capacity of 320 mAh/g at 2 A/g). The cathode energy densities can reach 1100 Wh/kg for FeO0.3F1.7 and 700 Wh/kg for FeO0.7F1.3 under the power densities of 220 and 4300 W/kg, respectively.

10.
Angew Chem Int Ed Engl ; 60(43): 23256-23266, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34405939

ABSTRACT

A core-shell additive with anionic Keggin-type polyoxometalate (POM) cluster as core and N-containing cation of ionic liquid (IL) as shell is proposed to stabilize Li-metal batteries (LMBs). The suspended POM derived complex in ether-based electrolyte is absorbed around the protuberances of anode and triggers a lithiophobic repulsion mechanism for the homogenization of Li+ redistribution. The gradually released POM cores with negative charge then enrich Li+ and co-assemble with Li. The Li+ repulsion-enrichment synergism can compact Li deposition and reinforce solid electrolyte interphase. This sustained-release additive enables Li∥Li symmetric cells with a long lifetime over 500 h and 300 h at high current densities of 3 and 5 mA cm-2 respectively. The complex additive is also compatible with high-voltage Li∥LiNi0.8 Co0.15 Al0.05 O2 (NCA) cells. Even with a NCA loading as high as ca. 20 mg cm-2 , the additive contained Li∥NCA cell can still cycle for over 100 cycles at 2.6 mA cm-2 .

11.
Small ; 17(30): e2102168, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34216431

ABSTRACT

Magnesium metal batteries (MMBs) have obtained the reputation owing to the high volumetric capacity, low reduction potential, and dendrite-free deposition behavior of the Mg metal anode. However, the bivalent nature of the Mg2+ causes its strong coulombic interaction with the cathode host, which limits the reaction kinetics and reversibility of MMBs, especially based on oxide cathodes. Herein, a synergetic modulation of host pillaring and electrolyte formulation is proposed to activate the layered V2 O5 cathode with expanded interlayers via sequential intercalations of poly(3,4-ethylenedioxythiophene) (PEDOT) and cetyltrimethylammonium bromide (CTAB). The preservation of bundled nanowire texture, copillaring behavior of PEDOT and CTA+ , dual-insertion mode of Mg2+ and MgCl+ at cathode side enable the better charge transfers in both the bulk and interface paths as well as the interaction mitigation effect between Mg-species cations and host lattices. The introduction of CTA+ as electrolyte additive can also lower the interface resistance and smoothen the Mg anode morphology. These modifications endow the full cells coupled with metallic Mg anode with the maximized reversible capacity (288.7 mAh g-1 ) and superior cyclability (over 500 cycles at 500 mA g-1 ), superior to most already reported Mg-ion shuttle batteries even based on passivation-resistant non-Mg anodes or operated at higher temperatures.

12.
Angew Chem Int Ed Engl ; 60(25): 14040-14050, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33837636

ABSTRACT

A dual modulation strategy of consecutive nucleation and confined growth of Li metal is proposed by using the metal-organic framework (MOF) derivative hollow capsule with inbuilt lithiophilic Au or Co-O nanoparticle (NP) seeds as heterogeneous host. The seeding-induced nucleation enables the negligible overpotential and promotes the inward injection of Li mass into the abundant cavities in host, followed by the conformal plating of Li on the outer surface of host during discharging. This modulation alleviates the dendrite growth and volume expansion of Li plating. The interconnected porous host network enables enhancement of cycling and rate performances of Li metal (a lifespan over 1200 h for Au-seeding symmetric cells, and an endurance of 220 cycles under an ultrahigh current density of 10 mA cm-2 for corresponding asymmetric cells). The hollow capsules integrated with lithiophilic seeds solve the deformation problem of Li metal for durable and long-life Li-metal batteries.

13.
Sci Bull (Beijing) ; 66(7): 694-707, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-36654445

ABSTRACT

Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF3 conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This g-C3N4 stuffed polyethylene oxide (PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional (2D)-nanosheet-built porous g-C3N4 as three-dimensional (3D) textured filler can strongly cross-link with PEO matrix and LiTFSI (TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity (2.5 × 10-4 S/cm at 60 °C) and Li+ transference number (0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO4 solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF3 cells show highly stabilized capacity as high as 300 mAh/g even after 200 cycles and of ~200 mAh/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution (>55%) and diffusion coefficient (as high as 10-12 cm2/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion.

14.
ACS Appl Mater Interfaces ; 12(41): 46132-46145, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32924504

ABSTRACT

Anode interface modification is crucial for the stabilization of Li-metal batteries (LMBs), which have been considered as the most promising system for the electric vehicle market owing to their high energy density (500 W h kg-1). However, the biggest challenge for LMBs lies in the preservation of anode reversibility, including plated Li morphology control and dendritic Li inhibition during cycling. Here, we propose a nanostructure modulation strategy of Li grains and plating to activate the anode kinetics of LMBs without the compromise of anode stability. This modulation is triggered by the rapid deposition of ultrathin polydopamine coating on the Cu foil (PDA@Cu), which results in an unusual interlaced growth of vertical or lie-down two-dimensional Li nanoflakes on PDA. The high binding energy (>3 eV) between Li atoms and rich imino/carbonyl groups enables a superior lithiophilicity of PDA to homogenize the Li-ion flowing and Li-mass electroplating with negligible nucleation overpotential. The high Coulombic efficiency (98%) and low voltage hysteresis (∼20 mV) are stabilized for at least 300 cycles in the Li-PDA@Cu cell architecture. This PDA@Cu electrode can even tolerate much higher current densities of 5 and 10 mA cm-2 for 170 and 100 cycles, respectively. The interlaced network of Li nanosheets reinforces the electric contact and therefore charge transfer at the anode-electrolyte interface characterized by small interfacial resistance (<3 Ω cm2) and activation energy (0.28 eV). A viewpoint of robustness loss or mechanical heterogeneity in Li plating is discussed to disclose the evolution from column-like Li grains to porous Li sponges and then to compactly stacked Li nanoflakes with porosity shrinkage.

15.
Nat Commun ; 11(1): 3716, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32709915

ABSTRACT

Garnet based solid-state batteries have the advantages of wide electrochemical window and good chemical stability. However, at Li-garnet interface, the poor interfacial wettability due to Li2CO3 passivation usually causes large resistance and unstable contact. Here, a Li2CO3-affiliative mechanism is proposed for air-accessible interface engineering of garnet electrolyte via facile liquid metal (LM) painting. The natural LM oxide skin enables a superior wettability of LM interlayer towards ceramic electrolyte and Li anode. Therein the removal of Li2CO3 passivation network is not necessary, in view of its delamination and fragmentation by LM penetration. This dissipation effect allows the lithiated LM nanodomains to serve as alternative Li-ion flux carriers at Li-garnet interface. This mechanism leads to an interfacial resistance as small as 5 Ω cm2 even after exposing garnet in air for several days. The ultrastable Li plating and stripping across LM painted garnet can last for 9930 h with a small overpotential.

16.
ACS Appl Mater Interfaces ; 12(30): 33729-33739, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32602697

ABSTRACT

The frustrating interfacial issue between Li metal anode and solid electrolyte is the main obstacle that restricts the commercial promotion of solid-state batteries. The garnet-type ceramic electrolyte with high stability against metallic Li has drawn much attention, but it also suffers from huge interfacial resistance and Li dendrite penetration due to the unavoidable formation of the carbonate passivation layer and limited interface contact. Herein, we propose a facile and effective method of flame vapor deposition to spray candle soot (CS) coating on the garnet surface. It enables the reduction of the carbonate layer and the conversion to a highly lithiophilic interlayer especially when in contact with molten Li. The lithiophilicity is rooted in the enrichment of graphitic polycrystalline domains in CS, which can be chemically or electrochemically lithiated to form the ionic/electronic dual-conductive network containing LiC6 moieties. The CS interlayer binds the Li metal with the garnet electrolyte tightly with gradual transition of Li-ion conductivity, leading to a significant reduction of the area-specific resistance to 50 Ω cm2 at 60 °C with high cycling and current endurance. Garnet-based symmetric cells and solid-state full cells conducting this strategy exhibit impressive electrochemical reversibility and durability under the preservation of the compact interface and smooth Li plating/stripping. The modified Li/garnet/FeF3 batteries exhibit a discharge capacity as high as 500 mA h g-1 and long-term cyclability for at least 1500 cycles (with capacity preserved at 281.7 and 201 mA h g-1 at 100 and 200 µA cm-2, respectively). This candle combustion strategy can be extended to more ceramic electrolytes compatible with high-temperature pretreatment.

17.
Angew Chem Int Ed Engl ; 59(29): 12129-12138, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32298043

ABSTRACT

Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis-conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2 Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2 Sx , and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.

18.
ACS Nano ; 14(3): 3365-3377, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32119525

ABSTRACT

A cathode host with strong sulfur/polysulfide confinement and fast redox kinetics is a challenging demand for high-loading lithium-sulfur batteries. Recently, porous carbon hosts derived from metal-organic frameworks (MOFs) have attracted wide attention due to their unique spatial structure and customizable reaction sites. However, the loading and rate performance of Li-S cells are still restricted by the disordered pore distribution and surface catalysis in these hosts. Here, we propose a concept of built-in catalysis to accelerate lithium polysulfide (LiPSs) conversion in confined nanoreactors, i.e., laterally stacked ordered crevice pores encompassed by MoS2-decorated carbon thin layers. The functions of S-fixability and LiPS catalysis in these mesoporous cavity reactors benefit from the 2D interface contact between ultrathin catalytic MoS2 and conductive C pyrolyzed from Al-MOF. The integrated function of adsorption-catalysis-conversion endows the sulfur-infused C@MoS2 electrode with a high initial capacity of 1240 mAh g-1 at 0.2 C, long life cycle stability of at least 1000 cycles at 2 C, and high rate endurance up to 20 C. This electrode also exhibits commercial potential in view of considerable capacity release and reversibility under high sulfur loading (6 mg cm-2 and ∼80 wt %) and lean electrolyte (E/S ratio of 5 µL mg-1). This study provides a promising design solution of a catalysis-conduction 2D interface in a 3D skeleton for high-loading Li-S batteries.

19.
ACS Omega ; 5(9): 4682-4688, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32175515

ABSTRACT

Selegiline, an inhibitor of monoamine oxidase B, is prescribed during the early stages of Parkinson's disease. The nutritional herbal medicine Panax ginseng C.A. Meyer has been reported to show potential neuroprotective activity; however, the herb-drug pharmacokinetic interaction between selegiline and P. ginseng extract has not been characterized. Our hypothesis is that the ginseng extract and selegiline produce pharmacokinetic interactions at certain doses. To investigate this hypothesis, a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to monitor selegiline in rat plasma. Experimental rats were divided into groups treated with selegiline alone (10 mg/kg, i.v.; 30 mg/kg, p.o.), with the low-dose ginseng extract (1 g/kg, p.o., for 5 consecutive days) or with the high-dose ginseng extract (3 g/kg, p.o., for 5 consecutive days). The pharmacokinetic results demonstrated that the oral bioavailability of selegiline alone was approximately 18%; however, when rats were pretreated with low and high doses of the ginseng extract, the bioavailability of selegiline was 7.2 and 29%, respectively. These results suggested that the ginseng extract may produce a biphasic pharmacokinetic phenomenon. In summary, ginseng alters the oral bioavailability of selegiline, and these observations might provide preclinical information concerning the pharmacokinetic interactions between selegiline and herbal supplements.

20.
ACS Omega ; 5(4): 1997-2004, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32039337

ABSTRACT

Schisandra chinensis (Turcz.) Baill. (S. chinensis) extract and its active ingredient, schizandrin, have been used as a botanical medicine and dietary supplement for the treatment of hepatitis. Lamivudine is an antiretroviral drug and is used to treat hepatitis B viral infection. The aim of this study was to develop an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the measurement of lamivudine and to determine the pharmacokinetic behaviors of an aqueous-ethanol extract of S. chinensis in rats. The separation was performed on a phenyl column maintained at 40 °C. The experimental animals were distributed into three groups: (1) lamivudine alone (10 mg/kg, i.v.); (2) lamivudine (10 mg/kg, i.v.) + pretreatment with S. chinensis (3 g/kg, p.o.); and (3) lamivudine (10 mg/kg, i.v.) + pretreatment with S. chinensis (10 g/kg, p.o.). The experimental results indicated that neither treatment with lamivudine alone nor pretreatment with S. chinensis (3 or 10 g/kg) significantly changed the pharmacokinetic parameters. In conclusion, based on the above preclinical experimental model, the combination of lamivudine with the herbal extract of S. chinensis did not exhibit significant pharmacokinetic interactions. These data offer useful information for assessing the preclinical safety of nutritional supplementation with lamivudine.

SELECTION OF CITATIONS
SEARCH DETAIL
...