Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(22): 8514-8529, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38846389

ABSTRACT

The advancement of optoelectronic applications relies heavily on the development of high-performance photodetectors that are self-driven and capable of detecting a wide range of wavelengths. CsPbI3 nanorods (NRs), known for their outstanding optical and electrical properties, offer direct bandgap characteristics, high absorption coefficients, and long carrier diffusion lengths. However, challenges such as stability and limited photoluminescence quantum yield have impeded their widespread application. By integrating PbSe colloidal quantum dots (CQDs) with CsPbI3 NRs, the hybrid nanomaterial harnesses the benefits of each component, resulting in enhanced optoelectronic properties and device performance. In this work, a self-powered and broadband photodetector, ITO/ZnO/CsPbI3:PbSe/CuSCN/Au, is fabricated, in which CsPbI3 NRs are decorated with PbSe QDs as the photoactive layer, ZnO as the electron-transporting layer and CuSCN as the hole-transporting layer. The device performance is further improved through the incorporation of Cs2CO3 into the ZnO layer, resulting in an enhancement of its overall operational characteristics. As a result, a notable responsivity of 9.29 A W-1 and a specific detectivity of 3.17 × 1014 Jones were achieved. Certainly, the TCAD simulations closely correlate with our experimental data, facilitating a comprehensive exploration of the fundamental physical mechanisms responsible for the improved performance of these surface-passivated heterojunction photodetectors. This opens up exciting possibilities for substantial advancements in the realm of next-generation optoelectronic devices.

2.
PLoS One ; 19(5): e0303235, 2024.
Article in English | MEDLINE | ID: mdl-38728287

ABSTRACT

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Subject(s)
Autophagy , Galectin 3 , Machine Learning , Neurons , Animals , Rats , Galectin 3/metabolism , Galectin 3/genetics , Glutamic Acid/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurons/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
3.
RSC Adv ; 14(9): 5812-5816, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362072

ABSTRACT

In this study, we report the observation of various conduction mechanisms in mechanically exfoliated PbSnSe2 based on temperature-dependent current and voltage characteristics. A transition from direct tunneling to Fowler-Nordheim tunneling in PbSnSe2 was observed at 2.63 V. At lower temperatures, the 3D Mott variable range hopping model fits the data, yielding a density of states of ∼8.80 × 1020 eV-1 cm-3 at 2 V. The values of Whop and Rhop were 64 meV and 22.7 nm, respectively, at 250 K. The Poole-Frenkel conduction was observed in the Au/PbSnSe2/Au device and the dielectric constant of PbSnSe2 was calculated to be 1.4. At intermediate voltages, a space charge limited current with an exponential distribution of traps was observed and a trap density of ∼9.53 × 1013 cm-3 and a trap characteristic temperature of 430 K were calculated for the Au/PbSnSe2/Au device.

4.
Opt Express ; 32(2): 2804-2816, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297800

ABSTRACT

Antimonide superlattice materials with tunable energy bands, high electron mobility, and easy attainment of good uniformity in large-area materials, are considered to be the material of choice for third-generation infrared photodetectors. Based on energy band engineering, this paper designs a series of long-wave infrared(LWIR) to very-long-wave infrared(VLWIR) photodetectors by employing M-structure superlattice(M-SL) as both absorber layer and barrier layer. The photodetectors' performances at different temperatures are simulated in this manuscript. At 77K, while minimizing the lattice mismatch, effectively suppresses the dark current of the device which can be as low as 1× 10-8A/cm2, with a quantum efficiency reaching 20.85% and normalized detectivity achieves 4.78×1011 cm·Hz1/2/W for LWIR photodetector with a cutoff wavelength of 11.1 µm. For the VLWIR photodetector with a cutoff wavelength of 16.7 µm, the corresponding figures are 1×10-6A/cm2, 16.77% and 3.09×1010 cm·Hz1/2/W, respectively.

5.
ACS Appl Mater Interfaces ; 16(6): 8158-8168, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38301155

ABSTRACT

Layered semiconductors of the V-VI group have attracted considerable attention in optoelectronic applications owing to their atomically thin structures. They offer thickness-dependent optical and electronic properties, promising ultrafast response time, and high sensitivity. Compared to the bulk, 2D bismuth selenide (Bi2Se3) is recently considered a highly promising material. In this study, 2D nanosheets are synthesized by prolonged sonication in two different solvents, such as N-methyl-2-pyrrolidone (NMP) and chitosan-acetic acid solution (CS-HAc), using the liquid-phase exfoliation (LPE) method. X-ray diffraction confirms the amorphous nature of exfoliated 2D nanosheets with maximum peak intensity at the same position (015) crystal plane as that obtained in its bulk counterpart. SEM confirms the thin 2D nanosheet-like morphology. Successful exfoliation of Bi2Se3 nanosheets up to five layers is achieved using CS-HAc solvent. The as-synthesized 2D nanosheets in different solvents are employed to fabricate the photodetector. At minimum selected power density, the photodetector fabricated using exfoliated ultrathin 2D nanosheets exhibits the highest range of responsivity, varying from 15 to 2.5 mA/W, and detectivity ranging from 2.83 × 109 to 6.37 × 107. Ultrathin 2D Bi2Se3 nanosheets have fast rise and fall times, ranging from 0.01 to 0.12 and 0.01 to 0.06 s, respectively, at different wavelengths. Ultrathin Bi2Se3 nanosheets have improved photodetection parameters as compared to multilayered nanosheets due to the high surface to volume ratio, reduced recombination and trapping of charge carrier, improved carrier confinement, and faster carrier transport due to the thin layer.

6.
Micromachines (Basel) ; 14(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38004973

ABSTRACT

Wearable electronics have received extensive attention in human-machine interactions, robotics, and health monitoring. The use of multifunctional sensors that are capable of measuring a variety of mechanical or environmental stimuli can provide new functionalities for wearable electronics. Advancements in material science and system integration technologies have contributed to the development of high-performance flexible multifunctional sensors. This review presents the main approaches, based on functional materials and device structures, to improve sensing parameters, including linearity, detection range, and sensitivity to various stimuli. The details of electrical, biocompatible, and mechanical properties of self-powered sensors and wearable wireless systems are systematically elaborated. Finally, the current challenges and future developmental directions are discussed to offer a guide to fabricate advanced multifunctional sensors.

7.
ACS Appl Mater Interfaces ; 15(1): 1276-1285, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36580431

ABSTRACT

Advanced oxidation processes (AOPs), achieved through the continuous attack of reactive oxygen species (ROS), are considered the most efficient way to mineralize organic pollutants. Among them, photocatalysis is the most environmentally friendly strategy for pollution mitigation but is hampered by low conversion efficiency. By exploiting the coupling effect without changing the properties of the semiconductor, the application of pyroelectric fields can significantly improve the catalytic performance. The degradation rate of rhodamine B by Bi0.5Na0.5TiO3 (BNT) nanoparticles under temperature fluctuations and visible light irradiation was up to 98%. The performance was enhanced by 216.54% and 31.48% compared to the pyroelectric catalysis and photocatalysis alone, respectively. The improved performance is due to the introduced pyroelectric potential with the imposition of temperature fluctuations, which can make the domains enhance the polarization of ferroelectrics, thus promoting the charge separation. This method can significantly advance the coupled pyro-photocatalytic reaction of ferroelectric semiconductors and also can enable the synergistic utilization of multiple energy sources such as solar and thermal energy, which is a promising strategy for environmental remediation.

8.
Light Sci Appl ; 11(1): 324, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369148

ABSTRACT

Among 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron. We introduce this selective chemical etching process to obtain ultrathin and large borophene nanosheets (thickness of ~4 nm and lateral size up to ~600 nm) from the precursor of AlB2. We also report first-time observation of a selective Acid etching behavior showing HCl etching of Al to form a residual B lattice, while HF selectively etches B to yield an Al lattice. We demonstrate that through surface modification with polydopamine (PDA), a biocompatible smart delivery nanoplatform of B@PDA can respond to a tumor environment, exhibiting an enhanced cellular uptake efficiency. We demonstrate that borophene can be more suitable for safe photothermal theranostic of thick tumor using deep penetrating near IR light compared to gold nanoparticles which are not degradable, thus posing long-term toxicity concerns. With about 40 kinds of borides, we hope that our work will open door to more discoveries of this top-down selective etching approach for generating borophene structures with rich unexplored thermal, electronic, and optical properties for many other technological applications.

9.
Contrast Media Mol Imaging ; 2022: 2629868, 2022.
Article in English | MEDLINE | ID: mdl-35845737

ABSTRACT

This study aimed to study the application value of computerized tomography (CT) images under the graph cut algorithm in the effect evaluation of perioperative fast-track surgery (FTS) nursing in tibial fracture. In this study, 80 tibial fracture patients in the perioperative period were selected as the research objects. These objects were randomly divided into two groups according to the examination method. In group A, routine CT examination was performed; in group B, CT examination under the graph cut algorithm was applied. The imaging results showed that there were still 16 cases with collapse of group A and 34 cases with collapse of group B; the difference was statistically significant (P < 0.05). As for 16 cases with collapse in both groups, the average collapse shown in group A was about 2.79 ± 1.31 mm, while that in group B was 5.51 ± 1.88 mm, with a statistically significant difference (P < 0.05). The average broadening in the images of group A was 3.17 ± 1.41 mm and that of group B was 5.72 ± 1.83 mm, suggesting that the difference was statistically significant (P < 0.05). The broadening distance of 3-4 mm was mainly shown in the images of group A and that of 5-8 mm was shown in group B, with a statistical difference (P < 0.05). In terms of the total score, there were 26, 44, 8, and 2 cases that were assessed as excellent, good, common, and bad, respectively, in group A, while 44 cases were assessed as good and 36 cases were assessed as common in group B, which were significantly different (P < 0.05). In summary, the graph cut algorithm not only had a good segmentation effect and segmentation efficiency but also could improve the evaluation of CT images for perioperative FTS nursing effect in patients with tibial fracture.


Subject(s)
Tibial Fractures , Algorithms , Humans , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery , Tomography, X-Ray Computed
10.
Nanotechnology ; 33(22)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35147516

ABSTRACT

The on-chip avalanche photodiodes (APDs) are crucial component of a fully integrated photonics system. Specifically, III-V compound APD has become one of the main applications of optical fiber communication reception due to adaptable bandgap and low noise characteristics. The advancement of structural design and material choice has emerged as a means to improve the performance of APDs. Therefore, it is inevitable to review the evolution and recent developments on III-V compound APDs to understand the current progress in this field. To begin with, the basic working principle of APDs are presented. Next, the structure development of APDs is briefly reviewed, and the subsequent progression of III-V compound APDs (InGaAs APDs, AlxIn1-xAsySb1-yAPDs) is introduced. Finally, we also discuss the key issues and prospects of AlxIn1-xAsySb1-ydigital alloy avalanche APDs that need to be addressed for the future development of ≥2µm optical communication field.

11.
Nanotechnology ; 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35144248

ABSTRACT

The on-chip avalanche photodiodes (APDs) are crucial component of a fully integrated photonics system. Specifically, III-V compound APD has become one of the main applications of optical fiber communication reception due to adaptable bandgap and low noise characteristics. The advancement of structural design and material choice has emerged as a means to improve the performance of APDs.Therefore, it is inevitable to review the evolution and recent developments on III-V compound APDs to understand the current progress in this field. To begin with, the basic working principle of APDs are presented. Next, the structure development of APDs is briefly reviewed, and the subsequent progression of III-V compound APDs (InGaAs APDs, AlxIn1-xAsySb1-y APDs) is introduced. Finally, we also discuss the key issues and prospects of AlxIn1-xAsySb1-y digital alloy avalanche APDs that need to be addressed for the future development of ≥2µm optical communication field.

12.
Nanomicro Lett ; 13(1): 156, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34264418

ABSTRACT

Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.

13.
J Environ Manage ; 293: 112854, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34058449

ABSTRACT

The photocatalytic activity of pure Mn3O4 and silver (Ag) modified Mn3O4 nanoparticles have been investigated. The nanoparticles were prepared by using co-precipitation technique. The structural analysis showed that the Ag modified Mn3O4 was successfully synthesized. For instance, a slight shift to lower angle of XRD pattern was observed after Ag doping. Morphological analysis revealed that the particles have an average size of 274 nm, 287 nm and 321 nm for pure, 1% and 3% Ag modified Mn3O4 respectively. The UV-Visible analysis indicated that the bandgap of Mn3O4 decreased with increased Ag content and the band gap is 1.4 eV with the 3% of Ag content. The spectra obtained from DRS were also evaluated through inverse logarithmic derivative method (ILD) to counter check the bandgap values. 3% Ag-modified photocatalysts exhibited the enhanced decolorization efficiency compared to pure Mn3O4 nanoparticles. The pseudo first order kinetic model is used to explain the photocatalytic kinetics of the photocatalyst. The rate constant values are 0.01/min, 0.017/min and 0.024/min for pure Mn3O4, 1% Ag and 3% Ag modified Mn3O4 nanoparticles, respectively.


Subject(s)
Methylene Blue , Nanoparticles , Catalysis , Light , Silver
14.
Nanotechnology ; 32(31)2021 May 10.
Article in English | MEDLINE | ID: mdl-33857936

ABSTRACT

Integration of graphene with semiconducting quantum dots (QDs) provides an elegant way to access the intrinsic properties of graphene and optical properties of QDs concurrently to realize the high-performance optoelectronic devices. In the current article, we have demonstrated the high-performance photodetector based on graphene: CdSe QDs/CdS nanorod heterostructures. The resulting heterojunction photodetector with device configuration ITO/graphene: CdSe/CdS nanorods/Ag show excellent operating characteristics including a maximum photoresponsivity of 15.95 AW-1and specific detectivity of 6.85 × 1012Jones under 530 nm light illumination. The device exhibits a photoresponse rise time of 545 ms and a decay time of 539 ms. Furthermore, the study of the effect of graphene nanosheets on the performance enhancement of heterojunction photodetector is carried out. The results indicate that, due to the enhanced energy transfer from photoexcited QDs to graphene layer, light absorption is increased and excitons are generated led to the enhancement of photocurrent density. In addition to that, the graphene: CdSe QDs/CdS nanorod interface can facilitate charge carrier transport effectively. This work provides a promising approach to develop high-performance visible-light photodetectors and utilizing advantageous features of graphene in optoelectronic devices.

15.
Appl Opt ; 59(14): 4499-4506, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32400430

ABSTRACT

All-optical photonic crystal diodes based on the Fano resonance of nonlinear defects are studied. The diodes can achieve nonreciprocal transmission ratios of 31.7 dB and 33.9 dB at working wavelengths of 1534.83 nm and 1536.02 nm, respectively. The function of two defects' coupling to the performance of unidirectional light transmission is also analyzed. When two Fano cavities are cascaded to form a two-branch-channel diode, unidirectional light propagation at 1536.88, 1538.76, 1612.80, and 1616.78 nm wavelengths is achieved along two opposite forward directions, and the nonreciprocal transmission ratios are 36.5, 30.3, 23.9, and 19.6 dB, respectively.

16.
Appl Opt ; 58(35): 9548-9555, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31873553

ABSTRACT

Based on the nonlinear resonators and self-collimation characteristics of light beams, we designed an all-optical photonic crystal beam splitter and switch. The proposed device consists of an input waveguide and three output waveguides connected to different ring resonators. Three pump beams transmit through different resonators via the self-collimation effect, and eight output states are realized by altering the intensity of the pump light. The proposed device works at the wavelength of 1629.57 nm, and the pump wavelength is located at 1240.00 nm. The transmittance contrast between the "on" and "off" states reached a maximum value of 124.0 and a minimum of 17.6. The minimal pump light intensity required to implement the performance is only ${0.162}\,\,{\rm W/}\unicode{x00B5}{\rm m}^2$0.162W/µm2, while the maximal value is about ${0.497}\,\,{\rm W/}\unicode{x00B5}{\rm m}^2$0.497W/µm2. Due to the small size of our proposed device and also its insensitivity to the pump light beams' incident location and spatial width within a certain degree, it has great potential application value in all-optical communications.

17.
Heliyon ; 5(11): e02758, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768433

ABSTRACT

An improved apparatus is used for nucleation measurements according to Nielsen's method. A new method is proposed to calculate the dilution ratio N of the reaction solution during nucleation rate determination. With the rule, when the initial apparent supersaturation ratio S'=f(N) in the dilution tank is controlled from 1.3 to 3.0, crystal nucleus dissolving and secondary nucleation can be avoided satisfactorily. Experiments are realized by varying the supersaturation ratio from 15.6 to 93.3 and temperature from 15 °C to 50 °C. Ferrous oxalate is precipitated by mixing equal volumes of ferrous sulfate and oxalic acid solution. The experimental results showed that the nucleation rate of ferrous oxalate in the supersaturation range above is characterized by the primary homogeneous mechanism and can be expressed by the equation R N = A N exp(-E a /RT)exp[-B/(ln S) 2 ], where A N = 3.9×10 13 m -3 s -1 , E a = 33.9 kJ mol-1, and B =13.7. The crystal growth rate can be expressed by equation G(t)=k g exp(-E' a /RT) (c-c eq ) g , where k g = 3.6 × 10 13 m/s, E' a = 58.0 kJ mol-1 , and g = 2.4.

18.
Appl Opt ; 58(11): 2860-2866, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-31044889

ABSTRACT

The sensitivities of the octagonal quasi-periodic photonic crystal (QPC) defective modes are theoretically studied. The octagonal QPC biosensors are composed of silicon columns arranged in a liquid background. By designing a defect structure, a variety of localized modes with different spatial symmetries and field profiles are obtained, and a maximum refractive index sensitivity 800 nm/RIU is achieved around 1500 nm transmission peak when the central rod's size equals 100 nm, and the corresponding detection limit reaches 0.00042. The liquid can flow freely among the rods through the entire structure, so it is convenient to monitor the concentration of protein in the liquid environment dynamically. The influence of the protein's thickness to the shift of the resonant wavelength is also studied, where a minimum protein's thickness of less than 10 nm can be detected by optimizing the central column's size to be 400 nm, and the spatial field profiles of different resonant modes are analyzed to explain the corresponding sensitivities.


Subject(s)
Biosensing Techniques/instrumentation , Nanostructures/chemistry , Silicon/chemistry , Limit of Detection , Photons , Sensitivity and Specificity
19.
Nanoscale Res Lett ; 14(1): 3, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30607636

ABSTRACT

Theoretical analysis and two-dimensional simulation of InGaAs/InAlAs avalanche photodiodes (APDs) and single-photon APDs (SPADs) are reported. The electric-field distribution and tunneling effect of InGaAs/InAlAs APDs and SPADs are studied. When the InGaAs/InAlAs SPADs are operated under the Geiger mode, the electric field increases linearly in the absorption layer and deviate down from its linear relations in the multiplication layer. Considering the tunneling threshold electric field in multiplication layer, the thickness of the multiplication layer should be larger than 300 nm. Moreover, SPADs can work under a large bias voltage to avoid tunneling in absorption layer with high doping concentrations in the charge layer.

20.
Appl Opt ; 57(19): 5405-5412, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30117833

ABSTRACT

The beam-splitting and wavelength selecting characteristics of the two-dimensional square-lattice photonic crystal with a rectangular microcavity and adjacent W1-type waveguides are studied. Based on the abundant defective modes with different symmetries supported by the central microcavity, a multiple-functional device with the abilities of beam splitting and wavelength selecting is achieved. Through altering the connecting location between the input/output channels and the central microcavity, the proposed device can achieve three kinds of functions at different wavelengths within an ultra-small wavelength band of about 3 nm, a maximum transmittance of 0.57, and signal-to-noise ratio of 149 are achieved for the one-channel selecting, 0.31 and 146 for two-channel splitting, and a maximum transmittance of 0.24 for the three-channel light beam sharing. The corresponding forward directions of light propagation along the output channels can also be flexibly adjusted.

SELECTION OF CITATIONS
SEARCH DETAIL
...