Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 17(7): 102456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820896

ABSTRACT

BACKGROUND: A. baumannii is an important and common clinical pathogen, especially in the intensive care unit (ICU). This study aimed to characterize one hypervirulent A. baumannii strain in a patient with community-acquired pneumonia and herpes simplex type 1 virus infection. METHODS: Minimum inhibitory concentrations (MICs) were determined using the Kirby-Bauer (K-B) and broth microdilution methods. Galleria mellonella infection model experiment was conducted. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The resistance and virulence determinants were identified using the ABRicate program with ResFinder and the VFDB database. The capsular polysaccharide locus (K locus) and lipooligosaccharide outer core locus (OC locus) were identified using Kleborate with Kaptive. Phylogenetic analyses were conducted using the BacWGSTdb server. RESULTS: A. baumannii XH2146 strain belongs to ST10Pas and ST447Oxf. The strain was resistant to cefazolin, ciprofloxacin, and trimethoprim/sulfamethoxazole (TMP-SMX). Bautype and Kaptive analyses showed that XH2146 contains OCL2 and KL49. WGS analysis revealed that the strain harbored blaADC-76, blaOXA-68, ant(3'')-IIa, tet(B), and sul2. Notably, tet(B) and sul2, both were located within a 114,700-bp plasmid (designated pXH2146-1). Virulence assay revealed A. baumannii XH2146 possessed higher virulence than A. baumannii AB5075 at 12 h. Comparative genomic analysis showed that A. baumannii ST447 strains were mainly isolated from the USA and exhibited a relatively close genetic relationship. Importantly, 11 strains were observed to carry blaOXA-58; blaOXA-23 was identified in 11 isolates and three ST447 A. baumannii strains harbored blaNDM-1. CONCLUSIONS: Early detection of community-acquired hypervirulent Acinetobacter baumannii strains is recommended to prevent their extensive spread in hospitals.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Community-Acquired Infections , Herpesvirus 1, Human , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Humans , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , China/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Animals , Virulence/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/isolation & purification , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Herpes Simplex/virology , Pneumonia, Bacterial/microbiology , Male , Genome, Bacterial , Moths/microbiology , Moths/virology
2.
J Cancer ; 12(14): 4247-4256, 2021.
Article in English | MEDLINE | ID: mdl-34093825

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Thyroid hormone responsive (THRSP) gene is primarily known for regulating responses to thyroid hormones, but its expression has been correlated with differential outcomes in some cancers. To date, however, its role in the progression of HCC remains unknown. Methods: The mRNA and protein expression of THRSP was measured in HCC tissues and cell lines via qPCR and western blot assays. Lentiviral transfection was used to establish stable cell lines overexpressing THRSP and shRNA was used to silence THRSP. The effects of THRSP on cell growth were then determined in vivo and in vitro. Cell migration and invasion of HCC cells were investigated using transwell and wound healing assays. Results: In tissue samples from patients, HCC tissues had decreased THRSP expression relative to adjacent healthy tissues. Further, patients with decreased THRSP protein and mRNA expression had worse outcomes. Knockdown of THRSP led to increased cell growth, migration, and invasion of HCC cells, and THRSP overexpression exerted an anti-tumor effect in vivo and in vitro. We found that increased expression of THRSP inhibited hepatocellular carcinogenesis by inhibiting the process of epithelial-to-mesenchymal transition through acting on the ERK/ZEB1 signaling pathway. Conclusion: THRSP may act as a functional tumor suppressor and was frequently reduced in HCC tissue samples. We identified a novel pathway for the THRSP/ERK/ZEB1-regulated suppression of HCC tumorigenesis and invasion. Restoring THRSP expression may represent a promising approach for HCC therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...