Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Am J Cancer Res ; 13(10): 4661-4677, 2023.
Article in English | MEDLINE | ID: mdl-37970352

ABSTRACT

Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to the limited targeted therapies available at present. Cancer cells preferentially use glycolysis as their primary source of energy, characterized by increased glucose uptake and lactate production. JTC-801, a nociception/orphanin FQ opioid peptide (NOP) receptor antagonist, was reported to suppress the opioid receptor-like1 (ORL1) receptor/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (NF)-κB-mediated carbonic anhydrase 9 (CA9) signaling pathway. Sodium oxamate is an inhibitor of gluconeogenesis and a glycolysis inhibitor, as a competitive lactate dehydrogenase A (LDHA) inhibitor, which also produces tumor suppression due to loss of LDHA activity. However, the roles of opioid analgesic drugs (e.g., JTC-801) and glycolysis inhibitors (e.g., sodium oxamate) in TNBC have not fully been explored. Meanwhile, concurrent treatment with JTC-801 and sodium oxamate may cause synergistic anticancer effects in a TNBC model. In the present study, the combination of JTC-801 and sodium oxamate triggered cell death in the TNBC MDA MB-231 cell line. RNA-sequencing data revealed potential genes in the crosstalk between JTC-801 and sodium oxamate including ALDOC, DDIT4, DHTKD1, EIF6, ENO1, ENO3, FOXK1, FOXK2, HIF1A, MYC, PFKM, PFKP, PPARA, etc. The combination of JTC-801 and sodium oxamate provides a novel potential therapeutic strategy for TNBC patients via downregulating cell cycle- and amino acid metabolism-related pathways such as "Cell cycle-the metaphase checkpoint", "(L)-tryptophan pathways and transport", and "Glutamic acid pathway". Collectively, the present study demonstrated that the synergistic effect of co-treatment with JTC-801 and sodium oxamate significantly suppressed tumor growth and played a crucial role in tumor development, and in turn may serve as potential synergistic drugs for TNBC.

2.
Am J Cancer Res ; 13(5): 1952-1969, 2023.
Article in English | MEDLINE | ID: mdl-37293150

ABSTRACT

Tumor progression is dependent on tumor cells and their microenvironment. It is important to identify therapies that inhibit cancer cells and activate immune cells. Arginine modulation plays a dual role in cancer therapy. Arginase inhibition induced an anti-tumor effect via T-cell activation through an increase in arginine in the tumor environment. In contrast, arginine depletion by arginine deiminase pegylated with 20,000-molecular-weight polyethylene glycol (ADI-PEG 20) induced an anti-tumor response in argininosuccinate synthase 1 (ASS1)-deficient tumor cells. ADI-PEG 20 did not cause toxicity to normal immune cells, which can recycle the ADI-degraded product citrulline back to arginine. To target tumor cells and their neighboring immune cells, we hypothesized that the combination of an arginase inhibitor (L-Norvaline) and ADI-PEG 20 may trigger a stronger anticancer response. In this study, we found that L-Norvaline inhibits tumor growth in vivo. Pathway analysis based on RNA-seq data indicated that the differentially expressed genes (DEGs) were significantly enriched in some immune-related pathways. Significantly, L-Norvaline did not inhibit tumor growth in immunodeficient mice. In addition, combination treatment with L-Norvaline and ADI-PEG 20 induced a more robust anti-tumor response against B16F10 melanoma. Furthermore, single-cell RNA-seq data demonstrated that the combination therapy increased tumor-infiltrating CD8+ T cells and CCR7+ dendritic cells. The increase in infiltrated dendritic cells may enhance the anti-tumor response of CD8+ cytotoxic T cells, indicating a potential mechanism for the observed anti-tumor effect of the combination treatment. In addition, populations of immunosuppressive-like immune cells, such as S100a8+ S100a9+ monocytes and Retnla+ Retnlg+ TAMs, in tumors were dramatically decreased. Importantly, mechanistic analysis indicated that the processes of the cell cycle, ribonucleoprotein complex biogenesis, and ribosome biogenesis were upregulated after combination treatment. This study implied the possibility of L-Norvaline as a modulator of the immune response in cancer and provided a new potential therapy combined with ADI-PEG 20.

3.
J Exp Clin Cancer Res ; 42(1): 22, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36639681

ABSTRACT

BACKGROUND: Nitric oxide-releasing drugs are used for cardiovascular diseases; however, their effects on the tumor immune microenvironment are less clear. Therefore, this study explored the impact of nitric oxide donors on tumor progression in immune-competent mice. METHODS: The effects of three different nitric oxide-releasing compounds (SNAP, SNP, and ISMN) on tumor growth were studied in tumor-bearing mouse models. Three mouse tumor models were used: B16F1 melanoma and LL2 lung carcinoma in C57BL/6 mice, CT26 colon cancer in BALB/c mice, and LL2 lung carcinoma in NOD/SCID mice. After nitric oxide treatment, splenic cytokines and lymphocytes were analyzed by cytokine array and flow cytometry, and tumor-infiltrating lymphocytes in the TME were analyzed using flow cytometry and single-cell RNA sequencing. RESULTS: Low doses of three exogenous nitric oxide donors inhibited tumor growth in two immunocompetent mouse models but not in NOD/SCID immunodeficient mice. Low-dose nitric oxide donors increase the levels of splenic cytokines IFN-γ and TNF-α but decrease the levels of cytokines IL-6 and IL-10, suggesting an alteration in Th2 cells. Nitric oxide donors increased the number of CD8+ T cells with activation gene signatures, as indicated by single-cell RNA sequencing. Flow cytometry analysis confirmed an increase in infiltrating CD8+ T cells and dendritic cells. The antitumor effect of nitric oxide donors was abolished by depletion of CD8+ T cells, indicating the requirement for CD8+ T cells. Tumor inhibition correlated with a decrease in a subtype of protumor macrophages and an increase in a subset of Arg1-positive macrophages expressing antitumor gene signatures. The increase in this subset of macrophages was confirmed by flow cytometry analysis. Finally, the combination of low-dose nitric oxide donor and cisplatin induced an additive cancer therapeutic effect in two immunocompetent animal models. The enhanced therapeutic effect was accompanied by an increase in the cells expressing the gene signature of NK cell. CONCLUSIONS: Low concentrations of exogenous nitric oxide donors inhibit tumor growth in vivo by regulating T cells and macrophages. CD8+ T cells are essential for antitumor effects. In addition, low-dose nitric oxide donors may be combined with chemotherapeutic drugs in cancer therapy in the future.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma , Animals , Mice , Nitric Oxide , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/therapeutic use , Drug Repositioning , Mice, Inbred C57BL , Mice, SCID , Cytokines , Tumor Microenvironment
4.
Int J Med Sci ; 17(11): 1639-1651, 2020.
Article in English | MEDLINE | ID: mdl-32669966

ABSTRACT

The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.


Subject(s)
Breast Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-akt/metabolism , Sialoglycoproteins/metabolism , Breast Neoplasms/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Cell Line, Tumor , Computational Biology , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Female , Humans , Proto-Oncogene Proteins c-akt/genetics , Sialoglycoproteins/genetics
5.
Int J Clin Exp Pathol ; 13(5): 1220-1242, 2020.
Article in English | MEDLINE | ID: mdl-32509099

ABSTRACT

Although a previous study suggested that erythropoietin-producing hepatoma (EPH) receptors play important roles in tumor progression and the overexpression of EPHs in cancer patients is related to poor prognoses, high-throughput gene expression profiling of EPH family members in different types and subtypes of cancers has so far not been conducted. We herein carried out a series of bioinformatic analyses on expressive profiles of every EPH member across 21 different types of clinical cancers versus matched normal tissues gathered from the Oncomine platform. We validated these results by protein expression study of all EPHs family members by The Human Protein Atlas repository. Our results uncovered the overexpression of most EPH subunits in numerous cancer types, especially the dramatic overexpression of six EPHs members, namely EPHA1, EPHA2, EPHA3, EPHA4 and EPHB1, EPHB2, EPHB3, EPHB4 in bladder, colorectal, esophageal, gastric, and prostate cancers. Furthermore, EPHB2 was specifically highly expressed in cervical cancer, EPHA3 in liver cancer, and EPHB1 in uterine cancer. Collectively, expressive profiles of these EPHs were confirmed and correlated with different cancer subtypes as potential biomarkers. This study provides useful information for further studies on cancer development and clinical treatments.

6.
Am J Cancer Res ; 10(1): 95-113, 2020.
Article in English | MEDLINE | ID: mdl-32064155

ABSTRACT

Increased activity of amino acid transporters has been observed in a wide variety of cancers. However, whether amino acid metabolism is related to estrogen receptor-positive (ER+) breast cancer has been less well studied. We identified the rate-limiting enzyme involved in amino acid metabolism associated with ER+ breast cancer by integrating numerous bioinformatics tools and laboratory studies. The bioinformatics analysis revealed that highly expressed genes in ER+ breast cancer patients were correlated with breast cancer-related pathways, including ESR1 and PI3K signaling. The metabolic signaling and the amino acid metabolism were significantly regulated in breast neoplasms. We used the ER+ breast cancer cell line MCF-7 and breast cancer tissue from National Cheng Kung University Hospital to validate our findings in bioinformatics. In estradiol-treated MCF-7 cells, genes associated with anabolic metabolism of serine and methionine and genes associated with catabolic metabolism of tyrosine, phenylalanine and arginine were upregulated. Furthermore, the expression levels of ARG2, PSAT1, PSPH, TH, PAH, and MAT1A mRNA were increased in breast cancer patients relative to controls. The aforementioned genes were also found to be highly correlated with distant metastasis-free survival in breast cancer patients. High expression levels of ARG2, CBS, PHGDH, AHCY, HAL, TDO2, SHMT2, MAT1A, MAT2A, GLDC, GLS2, BCAT2, GLUD1, PAH and MTR contributed to poor prognoses, whereas high mRNA expression levels of HECA, CTH, PRODH, TAT, and MAT2B were correlated with good prognoses. FDA-approved drugs, including piperlongumine, ellipticine, etidronic acid, harmine, and meclozine, may have novel therapeutic effects in ER+ patients based on connectivity map (CMap) analyses. Collectively, our present study demonstrated that amino acid metabolism genes play crucial roles in tumor development and may serve as prospective drug targets or biomarkers for ER+ breast cancer.

7.
Org Lett ; 21(19): 7833-7836, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31524405

ABSTRACT

We report herein a new approach for the synthesis of organothiophosphates from phosphonates and thiols through electrochemical reaction. The reactions were conducted without the addition of oxidant, transition-metal base, or base at room temperature. This system has a good substrate scope and functional group tolerance. Aryl and alkyl thiols worked well with phosphonates to afford the corresponding organothiophosphates in good yields.

8.
Am J Cancer Res ; 8(10): 2130-2139, 2018.
Article in English | MEDLINE | ID: mdl-30416862

ABSTRACT

MST3 (mammalian STE20-like kinase) is one of the protein kinase of the GCK III subfamily STE 20, and is known to play a role in cell growth and apoptosis. Our laboratory has demonstrated that MST3 promotes tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. In this report, we further investigated the potential oncogenic role of MST3 in gastric cancer. Examination of tissue samples from 101 gastric cancer patients revealed that higher expression of MST3 was observed in tumor part with immunohistochemistry. Furthermore, high expression of MST3 predicts poor prognosis in gastric cancer patients. To investigate the function of MST3 in vitro, MKN45 and NCI-N87 cell lines were transfected with the MST3 shRNA and stable clones were established. Downregulation of MST3 inhibited cell proliferation. The p21 expression was enhanced by MST3 shRNA in MKN45 gastric cancer cell line. Finally, downregulation of MST3 attenuated the anchorage-independent growth in soft agar and tumor growth in NOD/SCID mice. Altogether, our results indicate that MST3 potentially plays an oncogenic role in gastric cancer.

9.
Sci Rep ; 8(1): 8216, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844447

ABSTRACT

Homoharringtonine (HHT), an inhibitor of protein synthesis, has been used to treat leukemia. Its therapeutic effects on non-small cell lung adenocarcinoma carrying KRAS mutation and their immune system are less understood. The present study examined the therapeutic efficacy and the immune effects of HHT in two murine lung tumor models, xenograft and transgenic, carrying the Kras mutation G12D and G12C respectively. HHT exhibited efficient anticancer activity, significantly suppressing lung tumor growth in vitro and in vivo. The levels of 22 cytokines and chemokines in splenocytes of tumor-bearing mice were examined. Interleukin-12 expression was lower in splenocytes of HHT-treated mice when compared to the controls as demonstrated by a cytokine array and an enzyme-linked immunosorbent assay. The expression levels of CD80, CD86, and CD69 in B220+ B cells from splenocytes of HHT-treated mice were higher than that of control mice in two mouse tumor models. Furthermore, antitumor effect of HHT was attenuated with depletion of B cells. Increased numbers of CD80+ and CD86+ B cells were observed in the mice treated with narciclasine, another translation inhibitor. In conclusion, HHT changed the features of immune cells, and exhibited efficient anti-tumor activity against lung tumor carrying mutant Kras expression.


Subject(s)
Adenocarcinoma/immunology , Genes, ras , Homoharringtonine/pharmacology , Lung Neoplasms/immunology , Mutation , Adenocarcinoma/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Lung Neoplasms/genetics , Mice
10.
Mol Ther Nucleic Acids ; 9: 419-427, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29246320

ABSTRACT

Clec4a has been reported to be an immune suppressor of dendritic cells (DCs), but its potential role in cancer therapy remains to be elucidated. The present study investigated whether downregulating the expression of Clec4a via skin delivery of small hairpin RNA (shRNA) using a gene gun produced stronger host immunity and inhibited tumor progression in animal models. Administration of Clec4a2 shRNA delayed tumor growth in both mouse bladder and lung tumor-bearing mouse models. The result was further confirmed with a compensation experiment showing that the antitumor effects induced by Clec4a2 shRNA were restored by co-injection of a plasmid expressing exogenous Clec4a2. Increased numbers of infiltrating CD4+ and CD8+ T cells at tumor sites were observed in mice treated with Clec4a2 shRNA. Splenocytes from mice with Clec4a2 shRNA administration exhibited stronger cytotoxic activity compared with splenocytes from control mice. CD8-deletion in vivo abrogated the antitumor effects elicited by Clec4a2 shRNA. Additionally, shClec4a enhanced the antitumor effects of the Neu DNA vaccine in the MBT-2 tumor model. In summary, the findings provide evidence that silencing of Clec4a2 expression via skin delivery of shRNA produces an effective antitumor response and that Clec4a2 shRNA may have therapeutic potential as an adjuvant for cancer immunotherapy.

11.
Am J Cancer Res ; 7(11): 2103-2120, 2017.
Article in English | MEDLINE | ID: mdl-29218236

ABSTRACT

Tumor progression and metastasis are dependent on the intrinsic properties of tumor cells and the influence of microenvironment including the immune system. It would be important to identify target drug that can inhibit cancer cell and activate immune cells. Proteasome ß subunits (PSMB) family, one component of the ubiquitin-proteasome system, has been demonstrated to play an important role in tumor cells and immune cells. Therefore, we used a bioinformatics approach to examine the potential role of PSMB family. Analysis of breast TCGA and METABRIC database revealed that high expression of PSMB5 was observed in breast cancer tissue and that high expression of PSMB5 predicted worse survival. In addition, high expression of PSMB5 was observed in M2 macrophages. Based on our bioinformatics analysis, we hypothesized that PSMB5 contained immunosuppressive and oncogenic characteristics. To study the effects of PSMB5 on the cancer cell and macrophage in vitro, we silenced PSMB5 expression with shRNA in THP-1 monocytes and MDA-MB-231 cells respectively. Knockdown of PSMB5 promoted human THP-1 monocyte differentiation into M1 macrophage. On the other hand, knockdown PSMB5 gene expression inhibited MDA-MB-231 cell growth and migration by colony formation assay and boyden chamber. Collectively, our data demonstrated that delivery of PSMB5 shRNA suppressed cell growth and activated defensive M1 macrophages in vitro. Furthermore, lentiviral delivery of PSMB5 shRNA significantly decreased tumor growth in a subcutaneous mouse model. In conclusion, our bioinformatics study and functional experiments revealed that PSMB5 served as novel cancer therapeutic targets. These results also demonstrated a novel translational approach to improve cancer immunotherapy.

12.
Int J Oncol ; 49(5): 1881-1889, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27633757

ABSTRACT

Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the ß3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with ß3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer.


Subject(s)
Integrin beta3/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Thy-1 Antigens/metabolism , Animals , Anoikis , Apoptosis , Blotting, Western , Cell Adhesion , Cell Cycle , Cell Movement , Cell Proliferation , Female , Flow Cytometry , Humans , Integrin beta3/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Thy-1 Antigens/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Chem Asian J ; 8(9): 2196-203, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23832840

ABSTRACT

A new type of carbene-based ruthenium sensitizer, CB104, with a highly conjugated ancillary ligand, diphenylvinylthiophene-substituted benzimidazolepyridine, was designed and developed for dye-sensitized solar cell applications. The influence of the thiophene antenna on the performance of the cell anchored with CB104 was investigated. Compared with the dye CBTR, the conjugated thiophene in the ancillary ligand of CB104 enhanced the molar extinction coefficient of the intraligand π-π* transition and the intensity of the lower energy metal-to-ligand charge-transfer band. However, the incident photon-to-current conversion efficiency spectrum of the cell anchored with CB104 (0.15 mM) showed a maximum of 63 % at 420 nm. The cell sensitized with the dye CB104 attained a power conversion efficiency of 7.30 %, which was lower than that of the cell with nonconjugated sensitizer CBTR (8.92 %) under the same fabrication conditions. The variation in the performance of these two dyes demonstrated that elongating the conjugated light-harvesting antenna resulted in the reduction of short-circuit photocurrent density, which might have been due to the aggregation of dye molecules. In the presence of a coabsorbate, chenodeoxycholic acid, the CB104-sensitized cell exhibited an enhanced photocurrent density and achieved a photovoltaic efficiency of 8.36 %.

14.
Nanoscale Res Lett ; 7(1): 147, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22353282

ABSTRACT

The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon titanium tetrachloride (TiCl4) treatment. The efficiency in TNA-based DSSCs was improved by both TnB and TiCl4 treatment presumably due to the increase of dye adsorption.

15.
Dalton Trans ; 40(25): 6765-70, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21597610

ABSTRACT

A new series of N-heterocyclic carbene (NHC)-pyridine ruthenium complexes incorporating a carbene unit as an ancillary ligand were designed and successfully synthesized by using simple synthetic methods. The photophysical, electrochemical and photovoltaic properties of these NHC-pyridine based ruthenium complexes were investigated. These complexes showed photoelectric conversion efficiencies in the range of 6.43 ∼ 7.24% under the illumination of AM 1.5 (100 mW cm(-2)). Interestingly, the modifications on the ancillary ligand of these sensitizers by removal of an alkoxyl group and replacement of the octyl chain with a 3,5-difluorobenzyl group showed a 13% increase in the conversion efficiency for the CifPR dye. These results demonstrated that structural modifications on the NHC-pyridine ancillary ligand of ruthenium complexes results in dye-sensitized solar cells exhibiting a comparable cell performance to that obtained using the standard N719 dye.

SELECTION OF CITATIONS
SEARCH DETAIL
...