Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 365: 876-888, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030082

ABSTRACT

As one of the most challenging cancers, glioma still lacks efficient therapeutic treatment in clinics. The dilemmas of nanodrug-based therapies for glioma are due not only the limited permeability of the blood-brain barrier (BBB) but also the deficiency of targeting tumor lesions. Thus, spatiotemporally sequential delivery of therapeutics from BBB-crossing to glioma accumulation is considered a strategy to obtain better outcomes. Here, we developed a biomimetic chemotherapy nanodrug composed of the hybrid membrane envelope of U87 cell membranes and RAW264.7 cell membranes, and the core of paclitaxel (PTX)-loaded liposome (PTX@C-MMCL). In the research, PTX@C-MMCL showed superior ability to cross the BBB via RAW264.7 cell membranes and accurate targeting to the brain tumor lesions relying on the homotypic targeting capacity of U87 cell membranes. Furthermore, PTX@C-MMCL can maintain a prolonged circulation in vivo. Importantly, PTX@C-MMCL effectively inhibited the development of glioma. Conclusively, our biomimetic nanodrug holds great potential for brain tumor targeting therapy.


Subject(s)
Brain Neoplasms , Glioma , Humans , Liposomes/metabolism , Biomimetics , Cell Line, Tumor , Glioma/metabolism , Brain Neoplasms/metabolism , Paclitaxel , Drug Delivery Systems , Blood-Brain Barrier/metabolism
2.
Nanomedicine ; 53: 102693, 2023 09.
Article in English | MEDLINE | ID: mdl-37343780

ABSTRACT

Low response rate of immune checkpoint blockade (ICB) has limited its clinical application. A promising strategy to overcome this limitation is the use of therapeutic cancer vaccines, which aim to induce robust immune responses that synergize with ICB through immune enhancement and immune normalization strategies. Herein, we developed a combination immunotherapy by combining nano-vaccines consisting of whole tumor cell lysates/CpG liposomes (LCLs) with an anti-PD-L1 loaded lipid gel (aPD-L1@LG). The LCLs were fabricated using cationic liposomes, while the lipid gels (LGs) were prepared by using soybean phosphatidylcholine (SPC) and glycerol dioleate (GDO). Subcutaneous administration of LCLs successfully activated dendritic cells (DCs), and intratumoral administration of anti-PD-L1@LG ensured sustained ICB activity. These results demonstrated that this combination immunotherapy enhanced anti-tumor efficacy and prolonged the survival time in melanoma by activating systemic anti-tumor immune responses. These findings highlight the potential of this rational design as a promising strategy for tumor treatment.


Subject(s)
Liposomes , Melanoma , Humans , Liposomes/pharmacology , Immunotherapy/methods , Melanoma/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Lipids/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...